English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23238722      Online Users : 777
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/28076

    Contributors: 數學研究所
    Date: 1993
    Issue Date: 2010-06-29 19:41:20 (UTC+8)
    Publisher: 中央大學
    Abstract: A single-server retrial queue consists of a primary queue, an orbit and a single server. Assume the primary queue capacity is 1 and the orbit capacity is infinite. Customers can arrive at the primary queue either from outside the system or from the orbit. If the server is busy, the arriving customer joins the orbit and conducts a retrial later. Otherwise, he receives service and leaves the system. We investigate the stability condition for a single-server retrial queue. Let lambda be the arrival rate and 1/mu be the mean service time. It has been proved that lambda/mu < 1 is a sufficient stability condition for the M/G/1/1 retrial queue with exponential retrial times. We give a counterexample to show that this stability condition is not valid for general single-server retrial queues. Next we show that lambda/mu < 1 is a sufficient stability condition for the stability of a single-server retrial queue when the interarrival times and retrial times are finite mixtures of Erlangs.
    Appears in Collections:[數學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明