English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22940484      Online Users : 410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/28410


    Title: Hydrogen chemisorption and thermal desorption on the diamond C(111) surface
    Authors: Su,C;Song,KJ;Wang,YL;Lu,HL;Chuang,TJ;Lin,JC
    Contributors: 中央大學
    Keywords: CHEMICAL-VAPOR-DEPOSITION;AB-INITIO CALCULATIONS;ATOMIC-HYDROGEN;INFRARED-SPECTROSCOPY;MONOHYDRIDE PHASE;100 SURFACES;ISOTHERMAL DESORPTION;NANOCRYSTAL SURFACES;VIBRATIONAL-SPECTRA;(100)2X1 SURFACE
    Date: 1997
    Issue Date: 2010-06-29 19:48:18 (UTC+8)
    Publisher: 化學研究所
    Abstract: Temperature programmed desorption (TPD) and low energy electron diffraction (LEED) were utilized to study the interaction of atomic hydrogen with single crystal diamond C(111) surface. From isotherm and isostere analysis of TPD spectra acquired at various sample heating rates ranging from 0.6 K/s to 30 K/s, the kinetic parameters were extracted. It is found that molecular hydrogen desorption from the C(111) surface exhibits the first-order kinetics, This result is confirmed by no apparent shift in peak temperatures of TPD spectra for hydrogen coverage above 0.2 ML. At lower coverage regime, the isothermal desorption experiment also indicates the first-order desorption kinetics. A nearly coverage-independent activation energy of (3.7 +/- 0.1) eV and a prefactor of (9.5 +/- 4.0)x10(13) s(-1) are obtained except at relatively low coverages (below similar to 0.2 ML). In addition, the half-order LEED spots intensity decreases linearly with increase of the hydrogen coverage and drops to zero at similar to 0.5 ML. These results are interpreted with a model that during adsorption hydrogen atoms segregate to form metastable, highly hydrogenated domains from where hydrogen atoms recombine and desorb concertedly as the substrate surface is heated up. The comparison of this work with the hydrogen adsorption and desorption on silicon surfaces is also discussed, (C) 1997 American Institute of Physics.
    Relation: JOURNAL OF CHEMICAL PHYSICS
    Appears in Collections:[化學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML570View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明