本篇論文主要在設計與實現永磁同步電動機之驅動器,並以向量控制方法來架構控制系統。永磁式同步電動機(permanent magnet synchronous motor, PMSM)具有高功率密度、高效率及高加速能力等優點,因此已逐漸被廣泛地應用。 首先,探討永磁式同步電動機的數學模型。發現在旋轉座標系中各參數間為非耦合,有利於控制架構的簡化。控制器採用抗飽和比例積分控制器(anti-windup PI controller),在控制命令飽和的狀況下,防止暫態響應特性變差。控制器輸出命令經空間向量脈寬調變(space vector pulse width modulation, SVPWM)方法處理過後,可利用功率模組在定子繞組上產生旋轉電壓向量以驅動電動機。 接著,介紹驅動器硬體架構。依功能性不同做模組化設計,共區分成載板、數位訊號處理器模組、電源模組及編碼器模組。 最後,利用數位訊號處理器DSP2407將以向量控制為基礎的控制系統加以實現,並搭配自行設計之驅動器,分別進行電流、速度及位置控制,都獲得不錯的控制結果。 This thesis discusses the application of space vector control and the design of permanent magnet synchronous motor (PMSM) driver. The advantages of PMSM are high power density, high efficiency and good accelerated ability. These advantages make PMSM a widely used motor. First, researching on mathematical model of PMSM, we found that in rotating coordinate state variables are not coupling, and control structure become mot simple. The anti-windup PI controller prevents transient response from being worse when control commends saturate. Using the space vector pulse width modulation (SVPWM) method, power module creates a rotating voltage vector to drive motor. Second, we briefly state the hardware structure of motor driver. Each part of the driver is designed according to its function separately. There are four modules that construct the motor driver. It includes carrier board, DSP module, power module and encoder module. Finally, we implement space vector control based on digital signal processor DSP2407 on the motor driver designed by ourselves. From the results of current, speed and position control, we know the performance of this driving system is pretty well.