組織工程用神經導管提供一個橋接神經斷傷兩端的方式,不會造成斷傷兩端神經的張力,創造一個符合神經細胞生長的人為環境,同時可選擇使用生物相容性良好的生醫材料當做製作神經導管材料。 本研究選擇的材料為聚乳酸(PLA)及聚乳酸-聚甘醇酸共聚物(PLGA)兩種目前組織工程主要的人工合成可降解生醫材料,利用擠製冷卻成型法結合熱誘導式相分離法和濕式相分離法,靠著升溫程序對時間的變化程序來製作多孔性的神經導管,討論不同濃度和幾何尺寸對微孔洞分佈和孔洞大小、機械性質、含水率、孔隙率等影響,並依電子顯微影像來觀察神經導管外壁面、橫截面、內壁面,發現神經導管微孔洞成魚骨狀分佈,及孔洞分佈趨勢。由材料試驗機中測得其機械性質中抗拉強度、抗彎強度、撕裂強度,會隨著高分子材料濃度越高或導管外徑越大其值越大,而神經導管伸長量、應變值、楊氏係數卻是反之。而含水率與孔隙率的測試結果發現隨著材料濃度越高其值越小,但導管外徑大小不會影響含水率和孔隙率的高低值。 Porous nerve conduits are generally made by nontoxic biomaterials. It provides a bridge to connect the two ends of broken nerves and also an artificial environment for nerve regeneration. In this research, a method of using PLGA and PLA biomaterials to fabricate nerve conduits is introduced. The procedure combines extrusion freezing modeling to form conduits, which then go through wet immersion phase separation and thermally induced phase separation to generate porous conduits. The properties of the conduit such as pore distribution, pore size, tensile stress and strain, water content, and porosity are tested and analyzed with respect to the concentration and dimension of the conduit. The inner surface, outer surface, and cross sections of the conduit are also scanned by SEM to find their pore sizes. The experimental results show that tensile strength and fracture strength are direct proportion to the concentration and diameter of the conduit, while elongation, strain, and Young’s modulus are inverse proportion to them. Moreover, water content and porosity are direct proportion to the concentration of the biomaterial.