English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23380234      Online Users : 706
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/29077


    Title: CSMA/CF Protocol for IEEE 802.15.4 WPANs
    Authors: Sheu,ST;Shih,YY;Lee,WT
    Contributors: 通訊工程研究所
    Keywords: SENSOR NETWORKS
    Date: 2009
    Issue Date: 2010-06-29 20:12:44 (UTC+8)
    Publisher: 中央大學
    Abstract: Different emerging IEEE 802.15.4 wireless personal area networks (WPANs) are one solution for wireless sensor networks (WSNs), where applications are restricted by low data rate, short transmission distance, and low power consumption. The frame transmission mechanism of the IEEE 802.15.4 standard, which adopts the blind random backoff mechanism, was designed to minimize power consumption. However, it cannot provide satisfactory performance in a realistic hidden-node environment, because it may incur a hidden-node collision chain situation and unexpectedly limit the overall network capacity. For each successful data transmission, any inefficient transmission mechanism will incur prolonged access delay and will consume too much power. Moreover, the current design becomes inefficient as the number of devices significantly increases. As a solution, we propose a new multiple access protocol with improved efficiency at the sublayer between the media access control layer and the physical layer, i.e., a carrier sense multiple access with collision freeze (CSMA/CF) protocol, which comprises a collision resolving scheme and a P-frozen contention strategy. The CSMA/CF protocol can quickly alleviate aggravated collision situations in a hidden-node environment. Such a particular collision phenomenon is denoted as a collision chain problem (CCP). The impact from CCP is thoroughly discussed and analyzed. As confirmed by the results of analysis and performance evaluations, the proposed CSMA/CF protocol can achieve significant performance improvement in energy conservation, access delay reduction, and transmission reliability enhancement.
    Relation: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
    Appears in Collections:[通訊工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML584View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明