本實驗主要研究磁力輔助對電化學放電加工(Electrochemical Discharge Machining, ECDM)非導體元件之硼矽玻璃(Pyrex)的成形精度與穩定性探討,電化學放電加工可運用於非導電硬脆材料的加工上,但在實際製程的應用上,其輪廓及尺寸精度控制乃ECDM製程實用化之關鍵門檻,而與製程精度及重現性有直接關係的是放電電流密度與放電火花分布特性,其中最主要的影響因子為氣泡層的幾何外形與尺寸,及絕緣氣膜層的穩定性。本研究針對絕緣氣膜層之成長機制,及其所對應的加工精度與穩定性做一系列的探討與分析。 實驗結果顯示,當電壓能量為38 V、電解液濃度為6 M時將圓柱電極改為扁平電極能使微孔的加工品質有較佳的改善效果,其擴孔量有4 %的改善率。最後再增加輔助磁場進行加工,結果發現在穩定的放電電流狀態下,其微孔可獲得極佳的品質改善效果,擴孔量有26.7 %的改善率,加工效率也能有效的提升72 %。 Electrochemical Discharge Machining (ECDM) can be use for manufacture non-conductors brittle material, but the forming contours and dimension precision will effect industry application, a purpose on improve Pyrex glass forming precision and stability, using magnetism assisted in the experiment is new technology for ECDM. In the study, we find the discharge current density and spark distributable will effect forming precision and reliability but the most important key point is bubble geometry and dimension which will influence the stability of insulation gas film. According to the result, when voltage arrival 38 V、electrolyte concentrate at 6 M, and change electrode geometry from cylindrical tool to flat sidewall-flat front tool can improve microhole reaming arrival 4 %, and than combination of magnetism to increase the machining precision and reliability, improve microhole reaming achieve 26.7 %, machining efficiency achieve 72 %.