本研究主要探討高純度鋁箔(99.95%),在6N鹽酸(HCl)溶液中,以不同交流電波形進行電化學蝕刻,探討其孔蝕行為。其主要方法採用電化學量測方法 : 定電流循環極化法(GVP),由三角波為主軸再加以改變其正、負電流峰值位置之波形進行交流電蝕刻實驗,頻率定為10Hz,蝕刻時間為100週期且各個波形之電量皆為一致,最大電流密度為±0.15A/cm2,分別量測鋁箔表面其對應之電壓變化,來推測金屬與溶液界面的電化學反應。 結果顯示由改變正電流峰值位置之交流電蝕刻資訊可知: 正電流峰值位置離陰極半週期的起始點越近時,則陽極膜(anodic film)破裂電位(Eb)與破裂電流(Ib)有較低數值,形成陽極氧化膜所需之電量(Qf)減少、鋁溶蝕所消耗之電量(Qd)增加,造成鋁箔嚴重孔蝕,蝕孔(pores)較大。改變負電流峰值位置之交流電蝕刻:負電流峰值位置遠離陰極半週期的起始點時,陰極半週期中產生較緻密之氫氧化鋁(Al(OH)3)腐蝕膜(etching film),導致新蝕孔之發孔(成核)點減少,經陽極半週期對鋁基材之溶蝕後,使得蝕孔(pores)增大。 Pitting behavior of the pure Al-foil at the initial stage of its electrochemical etching in 6N hydrochloric acid by different waveform of triangular pulses has been investigated in this work. The exploration of this electrochemical etching was carried out by galvanodynamic voltametry polarization (GVP) method. Triangular waveforms with the constant current density at 0.2A/cm2. The corresponding potential of the aluminum foil surface was measured and compared in the three cases to illustrate the pits formation with different morphologies at the initial stage of electrochemical etching. The results of GVP curves reveals that there is a characteristic anodic peak (i.e., Eb, the breakdown potential of the anodic film) on the GVP. The magnitude of breakdown potential and breakdown current decreases in the order PPRT > PRT > ST > PLT > PPLT triangular waves. In PPLT Triangular waveform had less anodic film formation change (Qf) and more aluminum dissolution change (Qd) , so that the pores are big then other.