English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 22017647      Online Users : 227
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/31831


    Title: A new approach to fuzzy classifier systems and its application in self-generating neuro-fuzzy systems
    Authors: Su,MC;Chou,CH;Lai,E;Lee,J
    Contributors: 資訊工程研究所
    Keywords: LEARNING CONTROL NETWORK;REINFORCEMENT;PERFORMANCE
    Date: 2006
    Issue Date: 2010-07-06 18:12:29 (UTC+8)
    Publisher: 中央大學
    Abstract: A classifier system is a machine learning system that learns syntactically simple string rules (called classifiers) through a genetic algorithm to guide its performance in an arbitrary environment. In a classifier system, the bucket brigade algorithm is u
    Relation: NEUROCOMPUTING
    Appears in Collections:[資訊工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML279View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明