中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/36020
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78937/78937 (100%)
造访人次 : 39859516      在线人数 : 581
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/36020


    题名: The Formation of Parasitic Capillary Ripples on Gravity-Capillary Waves and the Underlying Vortical Structures
    作者: Hung,LP;Tsai,WT
    贡献者: 水文科學研究所
    关键词: DEEP-WATER;EVOLUTION;SURFACE;TANK
    日期: 2009
    上传时间: 2010-07-08 09:29:56 (UTC+8)
    出版者: 中央大學
    摘要: The evolution of moderately short, steep two-dimensional gravity-capillary waves, from the onset of the parasitic capillary ripples to a fully developed quasi-steady stage, is studied numerically using a spectrally accurate model. The study focuses on understanding the precise mechanism of capillary generation, and on characterizing surface roughness and the underlying vortical structure associated with parasitic capillary waves. It is found that initiation of the first capillary ripple is triggered by the fore-aft asymmetry of the otherwise symmetric carrier wave, which then forms a localized pressure disturbance on the forward face near the crest, and subsequently develops an oscillatory train of capillary waves. Systematic numerical experiments reveal that there exists a minimum crest curvature of the carrier gravity-capillary wave for the formation of parasitic capillary ripples, and such a threshold curvature (approximate to 0.25 cm(-1)) is almost independent of the carrier wavelength. The characteristics of the parasitic capillary wave train and the induced underlying vortical structures exhibit a strong dependence on the carrier wavelength. For a steep gravity-capillary wave with a shorter wavelength (e. g., 5 cm), the parasitic capillary wave train is distributed over the entire carrier wave surface at the stage when capillary ripples are fully developed. Immediately underneath the capillary wave train, weak vortices are observed to confine within a thin layer beneath the ripple crests whereas strong vortical layers with opposite orientation of vorticity are shed from the ripple troughs. These strong vortical layers are then convected upstream and accumulate within the carrier wave crest, forming a strong "capillary roller'' as postulated by Longuet-Higgins. In contrast, as the wavelength of the gravity-capillary wave increases (e. g., 10 cm), parasitic capillary ripples appear as being trapped in the forward slope of the carrier wave. The strength of the vortical layer shed underneath the parasitic capillaries weakens, and its thickness and extent reduces. The vortices accumulating within the crest of the carrier wave, therefore, are not as pronounced as those observed in the shorter gravity-capillary waves.
    關聯: JOURNAL OF PHYSICAL OCEANOGRAPHY
    显示于类别:[水文與海洋科學研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML552检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明