English  |  正體中文  |  简体中文  |  Items with full text/Total items : 72887/72887 (100%)
Visitors : 23151671      Online Users : 540
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/3694

    Title: 不同化學變性劑、溫度和還原劑對溶菌;The studies of the lysozyme structure change with different chemical denaturants, temperatures and reduced reagent
    Authors: 周茂村;Mao-Tsun Chou
    Contributors: 化學工程與材料工程研究所
    Keywords: 溶菌;螢光光譜儀;圓二色光譜儀;二硫代蘇糖醇;胍鹽酸;尿素;還原劑;結構;變性劑;溫度;temperature;denaturant;structure;lysozyme;fluorescence spectrophotometer;circular dichroism;reduced reagent;urea;guanidine hydrochloride;dithiothreitol
    Date: 2002-06-17
    Issue Date: 2009-09-21 12:20:20 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 重組蛋白質在回收過程中,常會因為胜 In the process of recombinant protein production, we often get inactive and insoluble inclusion bodies instead of target proteins due to high peptide concentration. In industrial application, denaturants such as urea or guanidine hydrochloride are used to solve these inclusion bodies to renature and purify/separate proteins and then denaturants are removed to get the protein we want. Factors to stabilize protein structures include hydrophobic interactions, hydrogen bonding, electrostatic interaction and covalent disulfide bonding. Urea is mainly used to break hydrophobic interactions and guanidine hydrochloride is to destroy hydrophobic and electrostatic interactions. Sometimes, salts such as sodium chloride/lithium chloride are added in urea as electrostatic interaction destroyer to enhance the denaturant power. Another commonly used reduced reagent (dithiothreitol, DTT) is to reduce disulfide bonding within protein. All these different mechanisms bring various influences to protein structures. In our study, we examine secondary and tertiary structure changes of lysozyme in various conditions (different concentrations of urea / guanidine hydrochloride / salts (sodium chloride), experimental temperature, with/without reduced reagent) with the aid of circular dichroism and fluorescence spectrophotometer to investigate the relationship between above factors and spectrum structure. When reduced reagent exists, guanidine hydrochloride causes greater changes in protein structure than urea and sodium chloride. Without reduced reagent, only high concentration of guanidine chloride causes significant protein structure changes. The results of fluorescence experiments indicates that tryptophan inside protein didn't expose easily when disulfide bond remained unbroken. Besides, from temperature manipulation experiments, we see the denature reaction with denaturants and reducing agents added is an exothermic reaction. At the mean time, the entropy of system decreases and melting temperature (Tm) is lower than that in buffer solution. From the above experiments, we know that if the disulfide bond is not reduced, we have to use denaturant with the capacity to break hydrophobic and electrostatic interactions in high concentration to induce significant changes in lysozyme structure. When disulfide bond is reduced, denaturants causes changes of lysozyme structure easier that indicate lysozyme is a hard protein itself. It’s possible to investigate the relationship between activity and structure of enzymes with the aid of ultraviolet spectrometer. In further studies, comparing reaction enthalpy in various conditions measured by isothermal titration calorimeter with thermodynamic data from spectrometer, we can learn the pathway of lysozyme denature process to see it’s two state or multi-state phase transformation reaction.
    Appears in Collections:[化學工程與材料工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明