English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65421/65421 (100%)
Visitors : 22271252      Online Users : 221
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/3714


    Title: 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究;Wetting Study of Lead-free Solder,In-Sn and SnAgCu Alloy,on the bulk Ni and thin film Ni
    Authors: 許家銘;jia-ming Shu
    Contributors: 化學工程與材料工程研究所
    Keywords: 錫銀銅合金;銦錫合金;濕潤角;Wetting Angle;Sn-Ag-Cu Alloy;In-Sn Alloy
    Date: 2002-07-08
    Issue Date: 2009-09-21 12:20:48 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 基於人類健康及環境的考量, 日本與歐盟( European Union)已經訂定一明確的時間表來禁止使用含鉛銲料。根據日本Ministry of Trade and Industry (MITI)的規定, 2002 年以後,任何含鉛之電子產品禁止銷售至日本, 而歐洲共同體系下的European Commission 則提案在2007 年以後, 歐貿各國不生產任何含鉛電子產品。很明顯地, 使用無鉛銲料在微電子與半導體工業已是一必然趨勢。不幸的是, 直到目前為止, 並沒有任何檯面上的無鉛銲料可以完全取代鉛錫合金。研究發展出適當的無鉛銲料, 已是電子工業現今的當務之急。 近一、二年來,雖然一些board level 的封裝,如BGA(BallGrid Array)及SMT(Surface Mount Technology)在無鉛銲料研發上已有較成功的進展。但在一些重要且關鍵的封裝技術如C4 (Controlled Collapse Chip Connection)和金屬散熱片銲料連接還沒有出現任何解決的方案, 前者是目前off-chipinterconnect 的主導封裝技術, 而後者吸引眾人巨大目光的理由是晶片散熱問題迫切地須要得到改進。 無鉛銲料在這兩個技術上, 其主要問題在於Si chip 與 Organic Substrate 或金屬散熱片( Heat Spreader) 之間的熱膨脹係數差異。熱膨脹係數的差異往往造成巨大的”熱應力”,以致於C4 solder bump 或Si 晶片破裂。目前已被建議之無鉛銲料,難以完全吸收此熱膨脹係數差異所造成的熱應力。因此,找尋一較為compliant, 且可吸收”熱應力”之無鉛銲料吸引人們極大注意。在所有已知的無鉛銲料中, 我們發現銦錫合金符合此一條件。因為銦錫合金延展性高, 而且已被報導具有優良的機械性質。 銲料與金屬墊層界面破裂的問題, 原因往往都是界面金 屬化合物的生成過厚。傳統銲料之金屬墊層(UBM)以銅為主,而目前無鉛銲料大多是Sn-rich 合金, 高量的Sn 含量容易與銅UBM 快速的反應而形成過厚之錫銅介面金屬化合物,甚至可能會有spalling 現象, 進而影響銲接界面之強度, 故與Sn反應緩慢的鎳-based 金屬墊層(UBM)已被廣泛使用。 為了徹底充份地瞭解銦錫、錫銀銅合金在鎳-based 金屬墊層上的濕潤研究, 我們設計一連串的實驗來研究銦錫合金與塊材鎳、銦錫合金與薄膜鎳(2000 Å)、錫銀銅合金與薄膜鎳之濕潤角及所生成之介金屬化合物。實驗條件如下:(1) 250℃ 下, 不同成份銦錫合金在塊材鎳上的反應,反應時間有1 分鐘及10 分鐘;(2)合金熔點以上20℃ 下, 不同成份銦錫合金在塊材鎳上的反應, 反應時間亦分別有1 分鐘及10 分鐘; (3)合金熔點以上20℃ 下, 不同成份銦錫合金在薄膜鎳上的反應, 反應時間仍 然有1 分鐘及10 分鐘;(4)250℃ 下, 不同成份錫銀銅合金與薄膜鎳(2000Å)的反應,反應時間從30Sec 至30 分鐘不等。經由這幾組實驗, 我們可以對SnIn/Ni、SnAg Cu/Ni 系統是否適用於電子封裝作進一步的檢驗, 所得到的實驗結果對未來無鉛銲料研發或反應式濕潤行為(reactive wetting)的基礎研究往前推進一大步。 Due to the concern of human health and the environment issue, Japan and European Union has set a schedule to ban the usage of lead-bear- -ed solders. According to the Ministry of Trade and Industry(MITI) regulations, all electronic productions containing lead-beared solders can not sale in Japan after year of 2002. It has been the trend to use lead-free solders in microelectronics and semiconductor industries. Unfortunately, no lead-free solder that can be fully replace lead-beared solders. So, it is an urgent issue to study suitable lead-free solders in current electronic Industries. Some board level’s package, BGA and SMT, have been successfully on the lead-free solder. But some important and key package technologies , such as C4(Controlled Collapse Chip Connection) and metal heat spreader interconnected with the solder, can not be solved at the moment. CTE(Coefficient Thermal Expansion) mismatch between Si chip and metal generates the huge thermal stress. So, solder gluing heat spreader and Si wafer is easily to crack after temperature cycling. Present lead-free solders can not endure the huge thermal stress. So it is important to find a lead-free solder that is compliant and can endure the huge thermal stress. Having high ductility and well mechanicial property, In-Sn alloys have potential to be used to joint Si chip and metal heat spreader. To cause the fatigue fracture in solder joint, intermetallic compound plays very important role. If intermetallic compound is too thickness, int- -erface between the solder and the under bump metallization(UBM) is volunable. Cu is traditional UBM. However, lead-free solders are often Sn--rich alloys, those Sn-rich alloys react easily and rapidly to form Sn-Cu intermetallic compound. After Cu UBM is consumed by soldering reaction, spalling will occur at the interface between the solder and the UBM.Comparing to Cu, Ni reacts slower with Sn-rich alloys. So, here, we select Ni as UBM substrate. To understand reaction mechanism between In-Sn alloy and bulk-Ni,we designed a experiment to study In-Sn alloy on bulk-Ni, such as wetting angle and intermetallic compound formation. The experimental conditions are: 1.the reflowing time are 10 min&1 min、2.the reflowing temperature are isothermal 250℃ and 20℃ above melting point of alloys. There are four differential experiment. We can study the wetting reaction between SnIn/Ni 、SnAgCu/Ni systems. Experimental result will have big contribution on lead-free solder or reactive wetting studies.
    Appears in Collections:[化學工程與材料工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown1006View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明