本論文主要的研究目的在於使用四種無參數活性係數模式來預估及計算均相及非均相混合物的共沸溫度及組成。在數學技巧上用以完成非線性計算是採用牛頓-拉普森法(Newton-Rapson method)及虛擬弧長連續法(pseudo-arclength continuation)及同倫法(homotopy)的觀念。對於液相活性係數的估算是採用下列四種無參數模式:Scatchard-Hildebrand、UNIFAC、Vetere-NRTL、及Ash-Wilson等方法。 對於本論文的資料來源是採用Horsley資料書及文獻所搜集的共沸系統數據取得之共沸點文獻值。首先,我們以無參數活性係數模式演算Lee等預估均相共沸混合物的性質,其結果獲得很好的一致性。再者,我們成功的預估混合物的共沸溫度及組成,並發現許多在Horsley資料中的均相共沸物都呈現為非均相行為於預估及計算過程。藉由比較分析提出各無參數活性係數模式的預測能力,並提出一個預測混合物系統共沸點的建議流程及程序說明。 In this study, the capabilities of four parameter-free models for predicting the heterogeneous and homogeneous azeotropic behavior of multi-component mixtures were evaluated. The present work was basically extended from that of Lee et al. (1996) for homogeneous azeotrope determination. The mathematical techniques of Newton-Raphson, pseudo-archlength continuation and concept of homotopy were used to accomplish the mathematical computations. Four parameter-free models, Schatchard-Hildebrand (1931); UNIFAC (1975); Vetere-NRTL (1994); and Ash-Wilson (1992), were employed for liquid phase activity coefficient estimations. The azeotropic mixtures from Horsley’s data book were adopted for this study. We have succeeded in predicting the azeotropic temperatures and compositions in these mixtures. It is very interesting and important to observe that many homogeneous azeotropes in Horsley’s data book (1973) appeared to be heterogeneous in our calculations.