English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65317/65317 (100%)
Visitors : 21314706      Online Users : 207
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/3827


    Title: 聚?吩和半導體氧化物奈米複合材料合成及應用於太陽能電池材料之研究;Synthesis of polythiophene and semiconductor nanocomposite and application to solar cell material
    Authors: 盧明德;Ming-De Lu
    Contributors: 化學工程與材料工程研究所
    Keywords: 太陽能電池;奈米複合物;氧化鋅;二氧化鈦;導電高分子;solar cell;nanocomposite;ZnO;TiO2;conducting polymer
    Date: 2008-05-29
    Issue Date: 2009-09-21 12:23:37 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本研究主要包含三大部分,包含二氧化鈦奈米管與聚噻吩複合材料、溶膠凝膠法及電化學合成二氧化鈦與聚噻吩雙層奈米管、聚(3-己基噻吩)和半導體氧化物複合材料應用於太陽能電池。而在導電高分子太陽能材料上,半導體氧化物中為以奈米柱或奈米管結構為主,由研究中發現奈米柱或奈米管有利於電子-電洞分離,較有機會提升光電池效率,所以論文中半導體氧化物部分將以奈米管及奈米柱為主軸。 第一部分主要在於利用不同方法合成二氧化鈦奈米管與聚噻吩複合材料,並探討其間的交互作用及電荷轉移。首先利用二氧化鈦奈米顆粒,經過水熱法將其轉換成奈米管的結構,未經煆燒的二氧化鈦奈米管為非晶型,研究中發現經300 ℃煆燒後仍維持管狀結構及為anatase晶型,符合之後的研究目的。在複合材料部分為利用二氧化鈦奈米管與噻吩單體進行氧化聚合合成複合物,再利用XPS分析中發現確實有電荷轉移的現象。而因為二氧化鈦與聚噻吩兩者對溶劑的分散性相差極大且易分離,因此研究中亦將二氧化鈦改質後再橋接聚(3-己基噻吩),改善兩物質之間的相分離現象,並提高複合材料在有機溶劑中的穩定度及提升電荷轉移的效率。另外亦在二氧化鈦奈米管上改質,使表面上有-SH官能基,再利用-SH與金的親合性,使金離子吸附在二氧化鈦表面,之後利用Au3+與EDOT之間的氧化還原反應合成PEDOT-Au-TiO2奈米管複合物,並藉由調控Au3+的濃度來探討複合物形成的機制及三者之間扮演的角色,由XPS及TEM的結果中發現在低濃度的Au3+中,可以讓Au均吸附在TiO2奈米管表面,而使得PEDOT均可以附在TiO2奈米管表面,而在XRD結果中也未發現Au繞射峰。 第二部份主要為以具規則孔洞排列,均一孔洞大小的氧化鋁膜為模板,以溶膠凝膠法合成結晶性高的anatase晶型之二氧化鈦奈米管,在二氧化鈦奈米管中,再以電化學法合成PEDOT奈米管。此部分主要為探討在二氧化鈦及PEDOT在奈米孔道模板中自組裝現象,及將PEDOT規則化生成為奈米管的電性探討,並將利用XPS、EPR及導電度來探討雙層奈米管中兩物質的交互作用及電化學性質,而藉由參數的調控後,得到結構良好的雙層奈米管。 第三部份為聚(3-己基噻吩)與二氧化鈦或氧化鋅奈米柱太陽能材料的合成與光電特性分析。由於電子在奈米顆粒的移動速率較在奈米柱為慢且以跳躍的方式行進,因此研究中利用模板法合成二氧化鈦奈米柱,及利用晶種優選晶面的方式合成氧化鋅奈米柱,並探討二氧化鈦及氧化鋅表面型態對於元件效率的影響。研究中將二氧化鈦或氧化鋅奈米顆粒改以奈米柱取代後,確實提昇了P3HT的螢光消光效率,而在光電池量測時也發現P3HT/二氧化鈦奈米柱較P3HT/二氧化鈦奈米顆粒的效率為高,而使用氧化鋅奈米柱也較利用氧化鋅奈米顆粒能產生較高的Isc及Voc。 This thesis mainly contains three major parts. Including polythiophene-TiO2 nanocomposite, bilayer tubes of poly(3,4-ethylenedioxythiophene) (PEDOT) and titania, poly(3-hexylthiophene) (P3HT)/semiconductor nanorod nanocomposite and application to solar cell material were described in thesis. The use of nanorod (or nanotube) result is demonstrated significantly to improve device performance, and that these improvements are caused partially by lower charge recombination, facilitating the electron transport. A major advantage of nanorod (or nanotube) as electron acceptors is their capability to generate continuous pathway, nanorod (or nanotube) structures so that a direct and ordered path for photogenerated electrons reaching the collecting electrode. First part: A composite of polythiophene and TiO2 nanotubes was synthesized. The XPS spectra of the composites show that the Ti2p peak shifts to a lower binding energy and S2p peak shifts to a higher binding energy. The TGA results also show that phase segregation occurred when the nanocomposites contained 35 % polythiophene. A P3HT composite, grafted on TiO2 nanotubes, was synthesized. Photoluminescence (PL) measurements show that the emission intensity of P3HT mixed with TiO2 nanotubes was one third of that of random P3HT, while that of P3HT grafted onto TiO2 nanotubes was 10%. The results show that the P3HT grafted onto TiO2 nanotubes is more efficient in photoinduced charge transfer than a physical mixture of P3HT and TiO2 nanotubes, indicating this composite has potential for the fabricating hybrid organic-inorganic solid state solar cells. A nanocomposite of PEDOT and titania nanotube was synthesized, a silane containing a thiol group, (3-mercaptopropyl)trimethoxysilane was grafted on the surface of titania nanotube. AuCl4- then formed a self-assembled monolayer on the grafted nanotube. EDOT was used in situ polymerized by AuCl4-. TEM photographs show the TiO2 nanotube and PEDOT nanocomposite shows nanotube structure. The XPS and EDS results showed the nanocomposite contains gold. Second part: Synthesis of bilayer tubes of PEDOT and TiO2 by electrochemical polymerization of PEDOT and chemical deposition of TiO2 in the pores of anodic alumina was reported. SEM photographs show the tubes of uniform diameters around 200 nm. TEM photographs confirm the formation of TiO2 and PEDOT bilayer tubes of 230 nm and 100 nm diameter, the thickness of outside TiO2 layer and inner PEDOT layer are around 20 nm under the experimental condition. The XPS spectra of the bilayer tubes show that the Ti2p peak shifts to a lower binding energy and S2p peak shifts to a higher binding energy. Electron diffraction patterns show that TiO2 nanotubes formed was single crystals of anatase phase. Third part: The synthesis of semiconductor oxide nanorod, including TiO2 and ZnO were synthesized, TiO2 nanorods are prepared using the template method, involving the synthesis of TiO2 nanorods in the nanoholes of the membrane, involving the synthesis of TiO2 nanorods in the nanoholes of the membrane. ZnO rod arrays have been successfully synthesized on ITO glass substrate from the aqueous solution of Zn(NO3)2 and C6H12N4 (HMT). The PL quenching measurements reveal that the photo-induced electron transfer is more efficient in P3HT/TiO2 (or ZnO) nanorods than in the P3HT/TiO2 (or ZnO) nanoparticle film. The photovoltaic cells that are made from P3HT/TiO2 nanorod array have much higher power conversion efficiency than those made from P3HT/TiO2 nanoparticles. The photovoltaic cells that are made from P3HT/ZnO nanorod array have much higher Isc and Voc than those made from P3HT/ZnO nanoparticles.
    Appears in Collections:[化學工程與材料工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown746View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明