摘要: | 摘 要 光電產業持續成長,新穎技術及新材料需求不斷更新;光學高分子於光電產業用途日漸廣泛與受重視。而環烯烴共聚合物(metallocene catalyzed cyclo-olefin copolymer, COC)材料因具優異之光學特性,宜發展為光學材料。本研究氫-乙烯-冰片烯反應後之產物為環烯烴共聚合物的一種,製程為氫及乙烯在甲苯為溶劑下與冰片烯(norbornene)反應產生COC。明顯的,氫及乙烯在甲苯的溶解度將影響COC的產率及性質。因此本研究將探討不同操作條件下,氫氣之溶解度,再以熱力學模式進行關聯,以增加對未知條件下之預測能力。 本研究為討論不同溫度、壓力下,氫氣在甲苯、冰片烯及COC混合液中溶解情形。實驗將進行在溫度為323.15 K, 373.15 K及423.15 K,壓力為500 kPa(5 bar)至2500 kPa(5 bar),混合液中冰片烯含量0 wt%至85 wt%,mCOC含量0 wt%至28 wt%之條件下。實驗方法將採用靜態式法。利用平衡槽之壓力變化決定系統之平衡。實驗結果發現氫氣在上述混合溶液中的溶解度將隨壓力上升而增加,但隨溫度上升而下降;不同溫度下,甲苯與冰片烯混合溶液組成比例的不同對氫氣溶解度的影響情形將有所不同;混合溶液中COC的含量增加時,將會使氫氣的溶解度下降。 所得之實驗數據本研究使用 Peng-Robinson 狀態方程式並配合凡得瓦單一流體混合律及Zhong-Masuoka混合律,計算方式採用泡點壓力計算法,進行數據關聯,並求得最佳之雙成分交互作用參數。 Abstract In this study, the solubilities of hydrogen in mixtures of toluene, norbornene, and cyclic olefin copolymer (COC) were measured at various temperatures (between 323.15 and 423.15 K), pressures (between 5 and 25 bar), concentrations of norbornene (between 0 and 85 wt %), and concentrations of COC (between 0 and 40 wt %). The experiments were conducted by the pressure decaying method using a newly designed apparatus. The experimental results show that the solubility of hydrogen increases with increasing system pressure but decreases with increasing system temperature in the above mixture. Another interesting observation is that the solubility decreases when the concentration of reaction product, COC, is increased. Thus, in addition to temperature and pressure, the COC concentration affects the reaction extent, and beyond a certain COC concentration, further reaction favoring COC generation is impossible because of the opposite effect on hydrogen solubility. Also, in this study, the experimental solubility data were expressed in vapor-liquid equilibrium relationship and correlated by bubble-pressure calculations with the Peng-Robinson equation of state incorporating the modified van der Waals one-fluid(vdW-1) mixing rules and the Zhong-Masuoka mixing rules, including the consideration of binary interaction parameters. The average absolute deviation percentages (AAD) of the correlation are less than 7 %, except that of pressure with the Z-M mixing rules. |