English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78728/78728 (100%)
造訪人次 : 34429046      線上人數 : 1750
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/3855


    題名: 金屬表面氧化:鈦之氧化殼層與金錫/金之銲料濕潤性研究;Metal surface oxidation: Oxide scales formation on Ti and Surface oxidation effect on AuSn/Au soldering wetting
    作者: 賴元泰;Yuan-Tai Lai
    貢獻者: 化學工程與材料工程研究所
    關鍵詞: 金屬氧化;金紅石;二氧化鈦;metal oxidation;rutile;TiO2
    日期: 2008-09-19
    上傳時間: 2009-09-21 12:24:20 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 金屬表面氧化: 鈦之氧化殼層與金錫/金之銲料濕潤性研究 (摘要) 1. 鈦之氧化殼層 二氧化鈦的廣泛地被應用在各個領域,例如染料敏化太陽能電池、太陽能產氫、鋰電池及各種生醫材料….等等。由於各應用的需求不同,因此二氧化鈦發展出各種複雜的物理或化學製造方式;然而最經濟也最方便的方法,應是直接氧化鈦金屬。 眾所皆知,鈦金屬對氧氣的親合性極佳,即使在極低的氧分壓下仍可快速的吸收氧氣;若氧分壓較高時,則可生成氧化物。過去眾多的學者皆專注鈦氧化動力學的研究,然而對於其生長之氧化殼層之型態卻沒有太多的解釋。 在高溫時,氧氣擴散進入鈦金屬而長出氧化層;此氧化層的形貌有兩種,外層為多層結構,中心則為結實的塊狀。 本研究主要在於解釋在固定的氧分壓與溫度之下,為何會產生不同形貌之二氧化鈦。 經由聚焦離子束(FIB)切開氧化初期之氧化物與金屬的界面,發現孔洞累積於界面,此孔洞累積乃形成層狀二氧化鈦之主因。 因氧化初期,鈦金屬尚未飽和造成氧的溶解;此氧溶解的通量過大,因而產生了孔洞。反之,當鈦金屬飽和時,無孔洞生成,因而長出塊狀二氧氧化鈦。 此外,研究中利用氧擴散之機制提出一模型,用以控制層狀二氧化鈦之厚度。 2. 金錫銲料/金濕潤性 共晶金錫(80wt%/20wt%)為光電業中熟知的焊接材料,雖然其組成多數為金,但並不代表金錫銲料不易氧化。一般來說,適當的的濕潤能使可靠度增加,然而使用AuSn銲料做覆晶接合時,普遍會有兩個嚴重的可靠度的問題產生;乃由於接合時的高溫所造成Au濕潤層快速的消耗,使得銲料直接接觸於其他附著性不佳的金屬層;或者是銲料的過度氧化造成濕潤效果不佳。 毫無疑問的,上述現象將造成可靠度嚴重的影響。 此研究主要乃研究共晶金錫銲料與金箔之間的濕潤反應。隨著回銲的時間與溫度的增加,金箔溶解進入銲料的程度也隨著增加。經由計算得到金溶入金錫銲料的活化能為41.7kJ/mol。此外Au5Sn 為主要的界面化合物;在360~440℃,其生長的活化能為54.3kJ/mol。 研究中發現金錫銲料球的濕潤性與溫度有關。當反應溫度為390℃時,金錫銲料球表現出最佳的濕潤行為(濕潤角為25°)。我們認為濕潤前端的動力學是由氧化的速率及金溶解的速率所控制。在390℃下反應,金的溶解程度主導濕潤行為;另一方面,當反應超過390℃,氧化的速率超過了金的溶解速率,濕潤因此被抑制。 Oxide scales formation on Ti Abstract: In this present work, the oxidation process of Ti metal foil was performed at a constant temperature (1000 ℃). The phenomenon of voids formation between oxide/metal interface was studied. As optimal mechanism is proposed to explain the vacancy accumulation and void formation. At a critical condition, which is the oxygen ion flux equals to the oxygen dissolution flux, the voids would start to nucleate and cause interfacial fracture. The mechanism could be used to interpret the oxide morphology of the oxide layer. In addition, we modified Wagner’s theory to obtain a model to explain why the oxide layer has a constant thickness. Furthermore, the relationship has been verified and discussed by various oxygen atmospheres. Surface oxidation effect on AuSn/Au soldering wetting Abstract: Wetting reactions between eutectic AuSn solder and Au foil have been studied. During the reflow process, Au foil dissolution occurred at the interface of AuSn/Au, which increases with temperature and time. The activation energy for Au dissolution in molten AuSn solder is determined to be 41.7kJ/mol. Au5Sn is the dominant interfacial compound phase formed at interface. The activation energy for the growth of interfacial Au5Sn phase layer is obtained to be 54.3kJ/mol over the temperature range 360℃ to 440℃. The best wettability of molten AuSn solder balls on Au foils occurred at 390℃ (wetting angle is about 25°). Above 390℃, the higher solder oxidation rate retarded the wetting of the molten AuSn solder.
    顯示於類別:[化學工程與材料工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明