本研究蒐集65個雙成分溶液系統,利用狀態方程式結合Eyring黏度模式的方法,探討Redlich - Kwong(RK)、Soave - Redlich - Kwong(SRK)和Peng - Robinson(PR)三個雙參數狀態方程式與Harmens - Knapp(HK)、Schmidt - Wenzel(SW)、Patel - Teja(PT)和Iwai - Margerm - Lu(IML)四個三參數狀態方程式,結合van der Waals(vdW)、van Laar(vL)和Redlich - Kister(RK)三種混合律,與分別以密度、過剩體積之實驗數據所決定的最適化交互作用參數值,搭配進行對Eyring黏度模式的關聯和估算。本文將針對關聯與預測計算流程—密度、過剩體積、黏度三項性質結果進行討論。 估算結果顯示一般雙成分混合溶液系統,則選用雙參數的狀態方程式,搭配交互作用參數κij= 0及單一參數 模式估算即可,其黏度的AARD值為1.41%;若系統分子極性較強,例如含水系統,則選用雙參數的狀態方程式,搭配交互作用參數κij= 0及LCD 模式,使得原本在單一參數 模式之AARD值高達12.60%,於LCD 模式之AARD值則減至2.78%,大大提升準確性。 In this study, the two - parameter van der Waals type cubic equations of state(EOS) of Redlich - Kwong(RK), Soave - Redlich-Kwong(SRK), Peng - Robison(PR), and the three - parameter EOS of Harmens - Knapp(HK), Schmidt -Wenzel(SW), Patel - Teja(PT) ,and Iwai - Margerm - Lu(IML) were used with the Erying kinematic viscosity model to estimate the visco- sities of 65 binary mixtures. The viscosity estimation with the molecular interaction parameter was correlated from the data of excess volumes or densities of mixtures. The effect of the molecular interaction parameter and the mixing rule, van der Waals (vdW), van Laar (vL), and Redlich - Kister (RK) on the viscosity estimations were also considered. More observations were discussed in this thesis.