English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23197030      Online Users : 694
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/38922

    Title: Crossover from incommensurate to commensurate magnetic orderings in CoCr2O4
    Authors: Chang,LJ;Huang,DJ;Li,WH;Cheong,SW;Ratcliff,W;Lynn,JW
    Contributors: 物理研究所
    Date: 2009
    Issue Date: 2010-07-08 13:59:18 (UTC+8)
    Publisher: 中央大學
    Abstract: The conical spin order of multiferroic CoCr2O4 has been studied by a neutron diffraction to investigate its magnetic phase transitions at temperatures below 40 K. Magnetic order of a spiral spin component with an incommensurate propagation vector of (0.63, 0.63, 0) was observed at 26 K, while at 14.5 K, the incommensurate conical spin order showed a transition into the fixed commensurate propagation vector of (2/3, 2/3, 0). In addition, two satellite peaks with propagation vectors of (0.035, 0, 0) and (0, 0.035, 0) from the commensurate vector were observed. The widths of these peaks indicate a long-range magnetic order. This new magnetic configuration below 14.5 K may lead to a new model of multiferroic behavior differing from the well-known spin-current model for magnetic ferroelectricity.
    Appears in Collections:[物理研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明