English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21715771      Online Users : 185
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/38978


    Title: Steady-shear-enhanced microdiffusion with multiple time scales of confined, mesoscopic, two-dimensional dusty-plasma liquids
    Authors: Io,CW;I,L
    Contributors: 物理研究所
    Keywords: DYNAMICS;TRANSITIONS;FILMS
    Date: 2009
    Issue Date: 2010-07-08 14:01:05 (UTC+8)
    Publisher: 中央大學
    Abstract: We experimentally investigate the multitime scale diffusion and the spatiotemporal behaviors of the degrees of enhancement for the longitudinal and the transverse diffusions in a confined mesoscopic quasi-two-dimensional dusty-plasma liquid sheared by two parallel counterpropagating laser beams. The steady external drive directly enhances the longitudinal cooperative hopping, associated with the shear bands that have high shear rate near boundaries. It drastically excites the slow hopping modes to high fluctuation level in the outer band region, accompanied by the enhanced superdiffusion. Through cascaded many-body interaction, the excitation flows from the outer region toward the center region, from the longitudinal modes to the transverse mode, and from the slow hopping modes to the fast caging modes, which are in better contact with the thermal bath. It causes the weaker enhancement of fluctuation level, and diffusion for the center region and the fast modes. The boundary confinement further breaks the system symmetry and enhances anisotropy. It has much stronger effect on the suppression of the transverse hopping modes than the longitudinal hopping mode. The degrees of enhancement of the fluctuations by the shear stress are highly anisotropic for the large amplitude slow modes, especially in the outer region but are more isotropic in the inner band.
    Relation: PHYSICAL REVIEW E
    Appears in Collections:[物理研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML471View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明