English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67783/67783 (100%)
Visitors : 23054672      Online Users : 163
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/39007


    Title: Geometry and representations of the quantum supergroup OSP (q)(1 vertical bar 2n)
    Authors: Lee,HC;Zhang,RB
    Contributors: 物理研究所
    Keywords: FINITE-DIMENSIONAL REPRESENTATIONS;YANG-BAXTER EQUATION;LIE-SUPERALGEBRAS;LINK POLYNOMIALS;IRREDUCIBLE REPRESENTATIONS;ARBITRARY-Q;MATRICES
    Date: 1999
    Issue Date: 2010-07-08 14:02:00 (UTC+8)
    Publisher: 中央大學
    Abstract: The quantum supergroup OSPq(1\2n) is studied systematically. A Haar functional is constructed, and an algebraic version of the Peter-Weyl theory is extended to this quantum supergroup. Quantum homogeneous superspaces and quantum homogeneous supervector bundles are defined following the strategy of Connes' theory. Parabolic induction is developed by employing the quantum homogeneous supervector bundles. Quantum Frobenius reciprocity and a generalized Borel-Weil theorem are established for the induced representations. (C) 1999 American Institute of Physics. [S0022-2488(99)00205-4].
    Relation: JOURNAL OF MATHEMATICAL PHYSICS
    Appears in Collections:[物理研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML225View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明