English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%)
Visitors : 23160724      Online Users : 203
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/39204


    Title: Universal tangle invariant and commutants of quantum algebras
    Authors: Lee,HC
    Contributors: 物理研究所
    Keywords: BRAID GROUP-REPRESENTATIONS;LINK POLYNOMIALS;FIELD THEORY;SUPERGROUPS;KNOTS
    Date: 1996
    Issue Date: 2010-07-08 14:08:12 (UTC+8)
    Publisher: 中央大學
    Abstract: We construct a universal tangle invariant on a quantum algebra. We show that the invariant maps tangle to commutants of the algebra; every (1, 1)-tangle is mapped to a Casimir operator of the algebra; the eigenvalue of the Casimir operator in an irreducible representation of the algebra is a link polynomial for the closure of the tangle. This result is applied to a discussion of the Alexander-Conway polynomial and quantum holonomy in Chern-Simons theory in three dimensions.
    Relation: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
    Appears in Collections:[物理研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML266View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明