The effect of a strong magnetic field on neutron stars or white dwarfs is calculated for Thomson scattering in a fully ionized collisionless plasma. The Stokes parameters for the scattered radiation are computed explicitly in terms of the state of polarization of the incident wave, the electron-cyclotron frequency, the plasma frequency, the angle of incidence, and the angle of scattering. The effects of the plasma are very insensitive to specific values of V(V = omega(p)2/omega2, omega(p) denotes the electron plasma frequency) so long as V much less than 1, whereas the criterion for the magnetic field to substantially affect the Stokes parameters is that the photon frequency be less than the electron-cyclotron frequency. The effects of classical radiation damping and natural line broadening are briefly mentioned.