在未來大面積、高功率的LED發展下,發光二極體的發光效率是否良好,主要的影響因素複雜,其中包含了熱、大電流的輸入等。大電流的輸入隨之而來的便是高溫,因此要如何去製作一個擁有可以輸入高電流又有良好散熱系統的元件,是我們努力研究的方向。 我們利用矽、銅本身的特性並結合此2種基材的基板;其主要的優點乃在於將LED鍵合於矽晶原上形成垂直式的結構可增將其元件設計的應用性,而於矽晶原的鍍穿孔中填入熱導性及電導性佳的銅金屬,則可以大大地降低熱效應對於LED發光效率的影響,並且促進其電流分佈。本論文為初期研究,研究重點在於利用金錫合金將LED鍵合於無銅填孔及含銅填孔之矽基版上其製程可行性,我們發現不同的鍵合溫度,對於氮化鎵薄膜的轉移有很重大的影響;此外整體元件在電性與光性上的表現,亦是我們關注的重點。 The developments of light-emitting diodes are large emitting area and high power in the future. The main causes include heat and large input current. Large input current accompanies high temperature. Therefore, how to make a device with large input-current capacity and excellent heat sink is worthy to study. The intrinsic characteristics of silicon and copper are utilized and a substrate formed with the combination of the two elements. The major advantage is the device application, i.e. a vertical LED structure bond to silicon wafer. Due to thermal and electrical conductivity, copper is used as metal via in silicon wafer. Thus, copper via reduces the influences of thermal effect on emitting efficiency of LED significantly and improves current spreading. In this thesis, the study will focus on the feasibility of Ni-Au compound help LED structures bond to silicon wafer (with / without metal via). Different bonding temperatures have significant influence on the transfer mechanism of GaN film. Furthermore, the electrical and optical performances of the entire device arekey points in this thesis.