本論文將商用材料及實驗室自行合成材料,利用行星式球磨機於大氣中濕式研磨,過濾分離出不同粒徑粉體,但因粉體在空氣中研磨,所以表面遭受到氧化及破壞,故在此利用50 wt.%丙二酸蒸鍍方式於873 K煆燒12小時,以其能修補被破壞的晶相並於磷酸亞鐵鋰粒子表面塗佈一層碳膜,幫助導電。 本製程所製備之不同粒徑粉體材料,經X光粉末繞射分析結果顯示在研磨過程中,經由鋯珠與粉體間的相互碰撞,造成碳膜破壞、脫落及晶相的減弱,但經50 wt.%丙二酸蒸鍍方式於873 K煆燒12小時後,晶相強度回復,藉此方式也於粒子表面塗佈碳膜;藉由SEM觀察材料之表面型態可得知,在研磨的過程中,可縮小粉體粒徑,並藉由鋯珠與粉體的碰撞將粒子變圓滑,趨於球形;另外,為了解材料中碳之塗佈情形,吾人以TEM/ SAED/ EDS進行分析,由EDS發現有些微的碳塗佈於LiFePO4材料表面,且以半透明之碳膜包覆於灰黑色LiFePO4材料表面,經SAED分析後發現為不定型結構之碳。 不同粒徑粉體中,以粒徑最小者電池性能最佳,於充放電截止電壓分別為4.3與2.8 V,0.2 C的測試條下,商用材料232 nm粉體,初始電容量為155 mAh g-1;實驗室自行合成材料205 nm粉體,初始電容量為157 mAh g-1。藉由CV觀察,隨著粉體粒徑的縮小,在動力學上的表現較佳,極化現象也趨於緩和。在不同電流下充放電測試,結果顯示粉體粒徑小者,能承受較高的電流,在商用材料232 nm粉體與實驗室自行合成材料205 nm粉體,所能承受的之最大電流分別為3與5 C;而大粒徑商用材料456 nm粉體與實驗室自行合成材料476 nm粉體,所能承受最大電流分別為1與3 C。 鋰離子電池在大型交通工具的應用中,材料能否具備良好的熱穩定性是重要的關鍵因素,在此經由DSC量測,不同粒徑粉體,在熱穩定性所造成的效應為何,結果顯示,不同的粒徑並不會增加或減少熱量的釋放,其初始溫度與裂解溫度分別為471與528 K,放熱量為95 J g-1。 由四點探針導電度計及比表面積分析結果發現,粉體粒徑小樣品具有較高的導電度與比表面積。粉體粒徑的縮小提升材料導電度至10-4 S cm-1左右,且不管是商用或實驗室自行合成材料,小粒徑粉體的比表面積約是大粒徑粉體兩倍。 LiFePO4 cathode materials with distinct particle sizes were prepared by a planetary ball-milling method. The effect of particle size on the morphology, thermal stability and electrochemical performance of LiFePO4 cathode materials was investigated. The ball-milling method decreased particle size, thereby reducing the length of diffusion and improving the reversibility of the lithium ion intercalation/deintercalation. It is worth noting that the small particle sample prepared using malonic acid as a carbon source achieved a high capacity of 160 mAh g-1 at a 0.1 C-rate and had a very flat capacity curve. However, the large particle sample decayed more dramatically in capacity than the small particle size samples at high C- rates. The improvement in electrode performance was mainly due to the nanometric fine particles, the small size distribution of the product, and the increase in electronic conductivity as a result of carbon coating. The structure and morphology of LiFePO4 samples were characterized with XRD, FE-SEM, TEM, EDS, and DSC techniques.