近年來,由於電腦CPU 的運算速度越來越快,使得其消耗功率、單位面積發熱量不斷增加,傳統的散熱方法,已無法應付其高發熱功率與高熱通量。因而有研究者開始以板式熱管均熱片,將晶片熱量平均擴散至封裝表面。然而之前各研究者之板式熱管結構設計,都以增加熱端與冷端內流體循環之毛細力為考量,未對上下板片蒸發與凝結熱傳性能增強加以研究改進。本研究預訂將蒸發及凝結熱傳增強技術,應用於薄板式熱管,於熱管上下板片分別以微機電製程製作出微鰭片及多孔表面,並考慮狹小空間內之兩相流動,使達到最佳之凝結及蒸發性能,再封裝成為高性能薄板式熱管。整體計畫分為三年,第一年進行多孔材質表面之蒸發熱傳性能,以及狹小空間內氣泡之成長及流動研究。第二年設計及測試微鰭表面之凝結性能,以獲得最佳設計。第三年則整合第一、二年之結果,製作出高性能之板式熱管。同時本研究將於第一年即開始製作及測試未經熱傳增強設計之板式熱管,之後隨各項熱傳增強方法設計完成,逐次加入熱管中,測試並比較其性能之差異,完成高性能之板式熱管。同時並於設計測試過程中,深入瞭解狹小空間中之蒸發、凝結現象,得到一理論與實際並重,真正學以致用的研究成果。 This study will apply the two-phase heat transfer enhancement technologies on the plate heat pipe type IC chip cooling heat spreaders. The plates of the heat pipe will be made by MEMS process to make porous and micro-fin surfaces for boiling and condensation heat transfer enhancement respectively, and then bonded to be a plate heat pipe heat spreader. This is a three-years period research project. In the first year, the bubble dynamic phenomenon of boiling in narrow space will be investigated by a high-speed camera. The boiling heat transfer performance on porous surfaces will also be measured. In the second year, the condensation heat transfer on micro-fin surfaces will be studied. Finally, in the third year, the optimum designed condensation and boiling surfaces will be used to fabricate a high performance plate heat pipe heat spreader and tested. 研究期間:9408 ~ 9507