在本計畫中,我們探討非捲積型Calderon-Zygmund奇異積分算子的若干問題,包括L p、H p、BMO空間上的有界性及加權有界性,及T1定理、Tb定理。我們也考慮Calderon-Zygmund奇異積分算子所形成的集合是否會成為一個代數(Algebra)?因為垂直正交的小波基底針對Tb定理中,b是accretive函數時,Calderon-Zygmund奇異積分算子所形成的集合是一個代數。然而,當我們考慮b是更一般的para-accretive函數時,小波基底就已經不再適用;我們只能改用Calderon表示定理來處理。此外,我們也探討Calderon-Zygmund算子在乘積空間上的有界性之估計。 In this proposal we consider some problems of non-convolution type Calderon-Zygmund singular integral operators, including (weighted) L p, H p, BMO boundedness, and T1 theorem, Tb theorem. We also consider the algebra of Calderon-Zygmund operators associated to para-accretive functions. It is known that, by use of the orthonormal wavelet basis associated to accretive functions, all Calderon-Zygmund operators satisfying certain conditions form an algebra. However, the orthonormal wavelet basis is not available for the general para-accretive functions. One possibility to fix the problem is to apply the discrete Calderon-type reproducing formula associated to para-accretive functions. Moreover, we also consider the boundedness of Calderon-Zygmund operators on the product dormain. 研究期間:9408 ~ 9507