第一年: 個人將理論討探流經鍺量子點的時變的穿隧電流,此地鍺量子點是崁入.氧化矽的基材裡頭。將經由等效質量模型來決定鍺量子點的量子能階,與電子彼此間的庫倫力。對小的量子點,我們預期同能階的庫倫斥力與非同能階的庫倫力都一樣重要在電子的量子傳.特性上。因此,我們想要知道時變穿隧電流如何受電子庫倫力影.。Anderson 模型 91/10/30 修訂將被用來建構鍺量子點的單電子電晶體,而單電子電晶體之穿隧電流可經由Keldysh格林函數法計算之。第.年: 個人將理論探討整合一起的.電子電晶體之穿隧電流,如向受量子點彼此間的耦合作用,及電子庫倫交互作用力之影.。利用等效質量模型來決定量子點彼此間的耦合作用強度,及電子庫倫交互作用力。再利Keldysh格林函數法來求解穿隧電流。 I will theoretically study the tunneling current through a germanium (Ge) quantum dot (QD) embedded in SiO2 matrix under ac bias. The energy levels and Coulomb interactions of electrons in a nanometer Ge QD will be calculated using an effective mass model. In small Ge QDs, we expect both the interlevel and intralevel Coulomb interactions are important in electron transport properties. Therefore, we would like to know how the ac tunneling current is influenced by the electron Coulomb interactions. The tunneling current of a Ge-QD single electron transistor (SET) will be calculated using the Keldysh Green function method and Anderson model.(2) Within the second year I am studying the tunneling current of integrated two single electron (or hole) transistors as a function of ac gate voltage. The main aim of this study is to undertand how the interdot Coulomb interactions and coupled strength between two dot are to influence the tunneling current. The effective mass model will be used to calculate the coupled strength and interdot coulomb interactions. Eventually, Keldysh Green』s function method will be employed to calculate the tunneling current. 研究期間:9408 ~ 9507