小球藻Chlorella sp.是一富含營養價值的微藻,已被大量商業化生產,如何增加生物量(biomass)以及其產物的營養價值,是近年來不斷被研究與改進的目標。 本論文將以小球藻與釀酒酵母(Saccharomyces cerevisiae)共培養(co-culture),探討因兩物種交互作用而改變的環境因子,包括二氧化碳、葡萄糖濃度、pH值以及崩解酵母細胞充當氮源對小球藻造成的影響。 實驗結果發現,小球藻Chlorella sp.在0.03%~5%二氧化碳濃度下,小球藻生長以及多醣產量隨濃度提高而上升;在弱鹼pH7.4~pH8.4範圍左右較適合Chlorella sp.生長,pH9.0則略微降低生長,pH6.5則有明顯抑制現象;0.125 g/L崩解酵母細胞有助於Chlorella sp.生長並提高多醣產量,另外也找出小球藻-酵母菌共培養系統的最佳葡萄糖濃度為0.5 g/L以及1 g/L,其中又以1 g/L可得最高的多醣產量,在此條件下共培養與兩物種分開培養相比可提升23% 總細胞濃度,胞內多醣產量1.5倍以及提高胞內多醣平均分子量以及提高胞內多醣活性30%。 Chlorella sp. is a kind of microalgae with many nutrition. It has been produce in commercialize. In recent years, to enhance the biomass and the value of production is important objects. This thesis had studied in the interaction between Chlorella sp. and Saccharomyces cerevisiae, and the environment factor include carbon dioxide, glucose concentration, pH, and yeast spend cells. It was found that Chlorella sp. growth and production of polysaccharide were directly proportional to CO2 concentration; In the range of about weak base pH7.4 ~ pH8.4 more suitable for Chlorella sp. growth pH9.0 was slightly lower growth, and pH 6.5 were supressd; 0.125 g/L spent yeast cell promoted Chlorella sp. growth and increase polysaccharide production; the best concentration of glucose that improve Chlorella sp. growth were 1 g/L and 0.5 g/L, among which 1 g/L system were produce the most polysaccharide. By co-culture, we can get more 23% cells, and 1.5 times intracellular polysaccharide and its molecular weight, also we can promoted the activity of IPS 30% than monoculture.