本研究的目的在於利用有限元素分析模擬皮膚在不同受力狀態下的機械行為,進而找出能夠符合真實情況的材料性質範圍。本研究根據Hendriks與Pailler-Mattei兩者於文獻中所使用材料特性作為基本假設,其分別為E=35kPa與C10=9.4kPa、C11=82kPa。以此作為皮膚材料特性分別進行兩試驗法的有限元素分析。兩試驗法分別為:吸力試驗法與壓痕試驗法。模擬結果發現E=35KPa並不能有效的代表當皮膚在進行兩試驗法時的材料特性,在經過多次的嘗試之後,發現當E值的範圍在160~220KPa之間,能有效表現皮膚在兩種不同狀態下的機械行為。而利用二階Mooney-Rivlin 超彈性應變能量函數作為皮膚材料特性的假設僅能模擬吸力試驗法的機械行為,無法模擬皮膚於壓痕試驗法的機械行為。為此,進行修正重新嘗試之後,發現在C10不改變的前提下,C11=17.5~82KPa之間能近似地模擬皮膚於兩試驗法的機械行為。以上為本研究的初步結果,以此可以作為未來再次進行皮膚有限元素分析時的一個參考依據。 The aim of this study is to simulate the mechanical behaviors of skin under different stress levels with the use of Finite Element Analysis (FEA) and further, to find the region of material property. Therefore, two mechanical tests: suction and indentation test were conducted to create two different stress levels. In addition, Hendriks and Pailler-Mattei’s assumptions-E-35KPa, C10=9.4kPa, C11=82kPa were examined to find the possible parameter region. The result shows that in both tests, Pailler-Mattei’s assumption-=35kPa can sufficiently describe the mechanical behavior of skin only when E is between 160kPa and 220kPa. Then, the second order Mooney-Revlin hyperelastic strain-energy assumptions: C10=9.4kPa, C11=82kPa were also analyzed to understand the skin material property. When FEA is applied, assumption only represent the mechanical behavior of skin in suction test, but not in the indentation test. Thus, more tests are run to find the region of C11. Without changing C1., this assumption can well illustrate the mechanical behavior of skin in both tests when C11=17.5~82kPa. These preliminary results of skin material property can be a further investigated by other scholars in the future.