本論文探討應用於聚光型太陽能光電系統之二次光學元件的搭配設計;聚光型太陽能光電系統的工作原理係將大面積的太陽光,利用聚光系統(穿透式:利用透鏡;反射式:利用反射鏡)匯聚到以三–五族半導體材料製成的太陽能電池上。由於三–五族太陽能電池價格昂貴,如何縮小其面積並同時提高使用效率便成聚光型太陽能光電系統的重要課題。另外,聚光型太陽能光電系統需搭配高精度的追蹤器,才能獲得良好的聚光效果,如何降低聚光型太陽能光電系統對偏差角度的敏感度也是一大問題。 為了達到上述目的,針對聚光系統去做搭配的二次光學元件設計,主要目的有3:1.降低太陽光偏差角度造成的光斑位置誤差,2.減少太陽能電池的無工作區,使光斑能量均勻。3.減低色差對聚焦位置的影響,上述目的達成後,便可有效提升模組效率,使發電成本下降。 首先,針對已有的聚光型太陽能光電系統架構參數進行探討,先對聚光鏡的光學特性部份做模擬分析,接著探討太陽光源有偏差角度時,搭配上二次光學元件後對整體效率的影響,並對反射型和穿透型的二次光學元件模擬結果做分析討論。接著改變聚光模組參數,搭配新設計的二次光學元件進行模擬,能使得整體模組獲得較佳效率,最後利用此新的聚光模組進行其他參數的模擬,例如加入溫度、組裝公差條件等,使模擬結果能更貼近真實情況。 This paper is applied to design concentrated photovoltaic (CPV) system with the second optical component; the fundamental work of CPV is using concentrated systems (transmission: the lens; reflection: the mirrors) to focus the large area of the sunlight on III-V semiconductor materials for solar cells. Because III-V solar cells are very expensive, how to reduce its size while increasing efficiency CPV systems will become an important issue. In addition, the CPV system will require a high-precision tracking devices in order to gain a better spotlight effect. How to reduce the sensitivity of CPV system for the angle deviation is also a great problem. To achieve this purpose, there are three methods for concentrated system with the second optical component design: 1.Reduce the error of spot position caused by the angle deviation of sunlight. 2. To reduce non-working area of solar cells in order to increase the uniformity of the spot energy. 3. To reduce the chromatic aberration effect for the focus position. If we achieve this purpose, then the efficiency of the CPV modules will be improved effectively and make the cost of electric power generation down. First of all, we discuss the parameters of the CPV structure, the first step is to simulate and analyze the optical properties of the concentrated lens, then discuss if the system has the angle deviation of the sunlight, what the influence with the second optical component on the overall efficiency is. The second step is to analyze and discuss the results of simulation for the reflective and transmissive type of the second optical component. The third step is that we change the parameters of concentrated module to simulate with the new design of the second optical component. It can make the whole module for better efficiency. Finally, we simulate by this new design of concentrator module for other parameters, such as adding temperature, assembly tolerance conditions, so that simulation results are closer to the actual situation.