藍寶石基底上矽(Silicon on Sapphire)因有良好的藍寶石來作為矽磊晶層之基底,能擁有次於本質矽品質之矽晶,故能應用在太陽能薄膜上。而現今常見矽晶薄膜轉移的技術為Smart-Cut®,其是利用高劑量氫離子佈值在矽晶層欲之轉移深度,再以高溫退火使氫離子濃度高峰之位置產生剝離,來完成矽晶薄膜轉移的目的。但其技術設備昂貴,始終無法減少製作成本。 矽材熔點高與熱膨脹係數小,且鋁材熔點低與熱膨脹係數大。因係數不同所產生的拉縮應力而形成界面剝離。本研究亦是利用此原理,先將鋁材加熱到其熔點,使之融合在矽層上,達到與矽層鍵合之目的,之後,材料冷卻過中所產生拉縮應力而形成矽層與藍寶石界面之剝離,來達到轉矽層轉移之目的。亦剝離過後之藍寶石可繼續作為矽磊晶之基底。此方法原理簡單、低成本,又可達到材料再利用之目的。 Because good sapphire for the substrate of silicon epitaxy layer . Silicon on sapphire can be applied to the thin film solar cell. The most well- known silicon film transfer technique is the Smart-Cut® . It implants high dosage hydrogen ion in the desired depth of the silicon layer, then annealed at high temperature for separation in the location of the peak of the hydrogen ion concentration to achieve the purpose of the silicon film transfer. But the equipment is so expensive for this technology. The melting point of silicon material is high and the thermal expansion coefficient is low. In addition, the melting point of aluminum is low and the thermal expansion coefficient is high. Due to mismatched thermal expansion coefficient, the separation occur at the interface by tensile stress and compressive stress. This study uses this principle. The aluminum is heated to its melting point first, enable it to fuse on the silicon layer, achieving the purpose of bonding. After that, upon cooling down, the materials undergo tensile stress and compressive stress, and then separate at the interface between silicon and sapphire for the purpose of the silicon transfer. The peeled sapphire can reuse as the substrate of the silicon epitaxy layer. The principle of this method is simple. low cost, and the material reuse.