本研究利用助熔劑長晶法和高溫高壓水熱合成法合成兩系列的化合物,A系列為銦鍺酸鹽化合物:[Rb3F2x]In3O2-xGe8O20 (A1)以及NaInGe2O6 (A2);B系列為兩個等結構的銦矽酸鹽化合物:Cs2SrIn2(OH)2Si4O12 (B1)以及Cs2BaIn2(OH)2Si4O12 (B2)。此兩系列的化合物利用單晶X光繞射法解析出化合物的結構及化學式,並進行結構上的深入探討,以粉末X光繞射分析確定樣品純度後進行物理性質的量測,例如:元素分析、紅外線光譜分析、螢光光譜分析。 A1具有嶄新的結構,其為第一個純無機的二維銦鍺酸鹽,InO6八面體以共邊的方式形成一維的鏈,銦氧鏈上下共角連結兩層鍺酸鹽層 [Ge4O10]4-形成二維的結構,結構中的孔道填充了Rb+以及F-,介於鍺酸鹽層之間填充了Rb+;A2則與文獻上的KInGe2O6為等結構的鍺酸鹽。此論文除了探討A1藍光放光機制與結構之間的關係,藉由比較A1及A2的單晶數據嘗試找出A1結構可能的放光位置。 B1與B2為等結構的銦矽酸鹽,InO6八面體以共角連結形成S型銦氧鍊,四個SiO¬4共角連結形成四員環[Si4O12]8-,四員環與銦氧鍊共角連結形成三維骨架結構。B1與B2具有不同的鹼土金族陽離子,論文中探討氫鍵作用力與結構之間的關係。 Two indium germanates were synthesized by the flux-growth method and two indium silicates were synthesized by the high-temperature, high pressure hydrothermal method. Four compounds are classified into two series based on their synthetic method. The series A denotes indium germanates, [Rb3F2x]In3O2-xGe8O20 (A1) and NaInGe2O6 (A2), while the series B denotes indium silicates, Cs2SrIn2(OH)2Si4O12 (B1) and Cs2BaIn2(OH)2Si4O12 (B2). All structures are determined by single-crystal X-ray diffraction, and the details of these structures are discussed. The purity of each compound was confirmed by the powder X-ray diffraction analysis, and the properties of these compounds were further characterized by different physical measurements, such as element analysis, infrared spectra analysis, and luminescence spectra analysis. A1 is a novel structure, which is the first inorganic indium germinate of 2-D layered structures. The structure contains parallel chains of edge-sharing InO6, which are linked by sharing vertices with two germanate single layers [Ge4O10]4- to form 2-D framework structure. Both Rb+ and F- are in the channels, and the Rb+ are located between the framework layers. A2 and KInGe2O6 are isostructural germanates. This research not only demonstrates the relationship between the optical mechanism and the structure of A1, but also infers the possible optical site. B1 and B2 are isotructural silicates. The structure contains S-shape chains of corner-sharing InO6, which are in turn linked by sharing vertices with four-membered single ring silicate anions [Ge4O12]8- to form a 3-D framework structure. The difference between B1and B2 is alkaline-earth cation. This research demonstrates the relationship between the interaction of hydrogen bond and the structure.