共焦顯微鏡利用空間濾波原理,達成點對點共焦成像特性,使得不需要把樣品真的切開,就能觀察到切片影像,將光學顯微術的非侵入性偵測能力發揮得淋漓盡致。共焦顯微鏡搭配螢光顯微技術,可將藥物配合螢光物質注入生物細胞中,追蹤藥物在細胞內的流動路徑;以及利用掃描系統得知螢光物質的空間分佈,以便鎖定單一個螢光物質進行其特性分析。共焦顯微術也可結合拉曼光譜技術,可對材料的鍵結組成有進一步的了解。本論文中,我們架設一台共焦拉曼與螢光顯微系統,之後利用測試樣品來對系統特性進行分析,橫向解析度測試部分,是掃描螢光物質的空間分佈,從其強度分佈的半高全寬來定義系統的橫向解析度,系統橫向解析度為0.6 μm;縱向解析度測試部分,是移動物鏡的前後位置,來得到縱向的反應曲線,一樣從其強度分佈的半高全寬來定義系統的縱向解析度,系統縱向解析度為5.5 μm;拉曼光譜量測部分,是先以石墨、單晶鑽石當作測試樣品,確認系統可量測出拉曼光譜,之後對我們用飛秒級脈衝雷射沉積的特殊結構之碳薄膜進行拉曼光譜量測,並探討特殊結構之碳薄膜的空間分佈及鍵結組成。 Confocal microscopy is a valuable tool in seeing clear images inside thick samples. It is also very suitable for biological researches due to its non-invasive nature. By using fluorescence technology confocal microscopy can trace medication with fluorescence materials in the cell. Using scanning system to obtain spatial distribution of the fluorescence materials, then analyzing the property for a fluorescence material. Also using Raman spectrum technology confocal microscopy to obtain bonding component of the material. In this thesis, we designed and sep up a confocal Raman and fluorescence microscopy. After the system has been installed, we test it performance about resolution. For example, if the wavelength is 637 nm, using an objective with 1.3 numerical aperture, its transverse and axial resolution are 0.6 μm and 5.5 μm, respectively. For Raman spectrum measurement, we used the graphite and single crystal diamond as standard sample to demonstrate our system. Then we measured carbon film which be product with femtosecond laser PLD, and we analyzing spatial distribution and bonding component of special structure of carbon film in the feature.