English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23046861      Online Users : 69
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/43901

    Title: Calderon-Zygmund;算子在乘積空間上的 H^p(R^n × R^m) 有界性 H^p(R^n × R^m) boundedness of Calderon-Zygmund operators
    Authors: 許谷榕;KU-JUNG HSU
    Contributors: 數學研究所
    Keywords: 乘積空間;奇異積分算子;有界性;哈地空間;Hardy spaces;singular integral operators;product space;boundedness
    Date: 2010-06-23
    Issue Date: 2010-12-08 14:25:58 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文的主要目的,是去討論乘積空間上的 H^p( R^n × R^m) 有界性。在這篇論文裡,應用了 Calderon 表示定理、向量值的奇異積分、Littlewood-Paley 理論、Fefferman 的矩形原子分解和 Journe 的覆蓋引理等方法去證明 T 在 H^p(R^n × R^m),max{n/(n+ε),m/(m+ε)}<p<= 1 上有界性的充分必要條件為 T*_{1}(1)=T*_{2}(1)=0,其中 ε 是關於 T 的算子核的正則指數。 The main purpose of this paper is to discuss H^p(R^n × R^m) boundedness of Calderon-Zygmund operators. We apply vector-valued singular integral, Calderon's identity, Littlewood-Paley theory and the almost orthogonality together with Fefferman's rectangle atomic decomposition and Journe's covering lemma to show that T is bounded on product H^p(R^n × R^m) for max{n/(n+ε),m/(m+ε)} <p<=1 if and only if T*_{1}(1)=T*_{2}(1)=0, where ε is the regularity exponent of the kernel of T.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明