English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21993876      Online Users : 210
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/43903


    Title: 秩為5的圖形;On the Graphs of Rank Five
    Authors: 蕭景文;Jing-Wen Shiao
    Contributors: 數學研究所
    Keywords: ;;鄰接矩陣;multiplication of vertices;graph;rank;five
    Date: 2010-06-28
    Issue Date: 2010-12-08 14:26:05 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 圖G 的秩是一個鄰接矩陣G 的秩。2009 年,黃良豪博士、張鎮華教授、葉鴻國教授等人已經完整的描繪出當連通圖之秩為4 時此圖的所有特徵。在本篇碩士論文中我們考慮以下兩個問題:(1)考慮連通圖G具有rank(G) = 5且從圖G中拿掉任何點v 皆會有rank(G-v)=3 時,圖G 的特徵。(2) 考慮連通圖G 具有rank(G) = 5且從圖G中拿掉任何點v皆會有rank(G-v)=4 時,圖G的特徵。在這篇論文我們已經完全解決這兩個問題。 The rank of a graph G is the rank of the adjacency matrix of G. In 2009, Chang, Huang and Yeh completely characterized the structure of a connected graph of rank 4. In this paper we consider the following two questions: (1) What is the structure of a connected graph G with the property that rank(G) = 5 and rank(G-v) = 3 for all v belong to V(G)? (2) What is the structure of a connected graph G with the property that rank(G) = 5 and rank(G-v) = 4 for all v belong to V(G)? In this paper we completely resolve these two questions.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML495View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明