中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/43905
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78937/78937 (100%)
Visitors : 39823281      Online Users : 937
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/43905


    Title: 二階非線性守恆律的整體經典解;Global Classical Solutions for the 2 × 2 Nonlinear Balance Laws
    Authors: 李育誠;Yu-cheng Lee
    Contributors: 數學研究所
    Keywords: 雙曲守恆律;非線性守恆律;柯西問題;整體經典解;特徵線法;Nonlinear balance laws;Hyperbolic conservation laws;Characteristic method;Global classical solutions;Cauchy problem
    Date: 2010-06-29
    Issue Date: 2010-12-08 14:26:13 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在這篇論文中,我們討論二階非線性系統守恆律的整體經典解存在性.使用特徵線法和A uniform a priori estimate我們去建立整體經典解的存在條件. In this thesis, we consider the Cauchy problem of 2 × 2 nonlinear hyperbolic balance laws whose source terms consist of the integral of unknowns. Such nonlinear balance laws arise in, for instance, the compressible Euler-Poisson equations of gas dynamics in Lagrangian coordinate. We are concerned with the global existence of classical solutions to the Cauchy problem of such differential-integro systems. We extend the results by Ta-tsien Li for quasilinear hyperbolic systems to our nonlinear balance laws. The method in this thesis based on the following three steps: (1) the theory of local classical solutions, (2) uniform a priori estimate, (3) global existence or blow up of classical solutions. We find the transformation so that the 2 × 2 system for the first derivatives of Riemann invariants are de-coupled under this transformation. So, the characteristic method for scalar equations can be applied.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML802View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明