English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%) Visitors : 23117821      Online Users : 224
 RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/43906

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/43906`

 Title: 圓環面網路上的病毒散播;On the Spread of Viruses on Torus Cordalis Networks Authors: 黃偉婷;Wei-ting Huang Contributors: 數學研究所 Keywords: 圖形;網路;病毒散播;graph;Spread of Viruses;Network Date: 2010-06-30 Issue Date: 2010-12-08 14:26:15 (UTC+8) Publisher: 國立中央大學 Abstract: 把Torus Cordalis Network G看作是一個電腦網路分佈圖，其中每個點代表一台電腦，連接兩點的邊代表連接兩台電腦的網路。 我們在本篇論文內考慮在G上電腦病毒傳染的數學模型。 我們在G上電腦病毒傳染的過程如下: 一開始圖G上有些點被塗成白色(代表健康)，剩下的點被塗成黑色(代表被感染)。 我們先假設一個點變成黑色後它就永遠無法重回白色。 在離散的時間 t 時，每個白點會被在前一個時間 (t-1) 時較多鄰居已經的被塗的顏色重新著色，否則它依然是白色的。在本篇論文中，給定一個Torus Cordalis Networks G後，我們研究一開始要令G上多少點塗成黑色(代表被感染)才能在最後將G上所有點感染為黑色。 Let G = (V,E) be a connected computer network, where a vertex represents a computer and each edge between two vertices represents a cable connecting them. We consider a mathematical model of “computer virus” propagation on G, where computer viruses are small computer programs that can infect computers. Consider the following repetitive process on G: Initially, each vertex is colored white (healthy) or black (infected). The set of initial black vertices is called a seed. We assume that once a vertex becomes black, it remains black forever. At each discrete time step, each white vertex is recolored by the color shared by the majority of vertices in its neighborhood, at the previous time step; in case of tie, it remains white. The process runs until either all vertices become black or no additional white vertices can be infected. The minimum number of virus seeds for G is denoted by B(G). In this paper, we study B(G) for torus cordalis graphs G. Our work improves some results of Flocchini, Lodi, Luccio, Pagli and Santoro (Dynamic monopolies in tori, Discrete Applied Mathematics 137 (2004) 197-212). Appears in Collections: [數學研究所] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML524View/Open