這篇論文主要目的,是證明 Calderon-Zygmund 算子在和 para-accretive 函數相關的 Hardy 空間 H^{p}_{b} 上的有界性。在第二節裡,我們首先建構了主要的工具,一個離散形式的 Calderon 表示定理。而在第三節內我們則利用 Little-Paley g 函數定義了和 para-accretive 函數相關的 Hardy 空間。接者透過Plancherel-Polya 型的不等式去保證這空間的定義是合理的。進第一步地,在最後一節我們證明了當 Calderon-Zygmund 算子加上T^{*}(b)=0 這條件下,即能保證這個算子是從經典的 H^{p} 到H^{p}_{b} 是有界的。 In this paper, the main purpose is to claim the boundedness of the Calderon-Zygmund operator on the Hardy spaces H^{p}_{b} associated to para-accretive functions b for frac{n}{n+varepsilon}<pleq1. We first construct the main tool in section 2, the discrete version Calderon-type reproducing formula. In section 3, we established the Hardy spaces H^{p}_{b} associated to para-accretive functions b is defined by the Little-Paley g function. Moreover, the new Hardy spaces H^{p}_{b} is well-defined by the Plancherel-Polye type inequality. Further, in last section, we show that the boundedness of the Calderon-Zygmund operator T with T^{*}(b)=0 from the classical Hardy spaces H^{p} to H^{p}_{b} for frac{n}{n+varepsilon}<pleq1.