本文主要在於探討穩定配對中的穩定婚姻問題,提及穩定男伴、拆散配對以及P循環的概念,重新推導 Knuth, Motwani 與 Pittel 的結論: 對任何女生的穩定男伴為至少 max(0,(1/2-epsilon)lnn ,最多為 (1+epsilon)lnn 個的機率趨近 1,當n → ∞ 時,其中 0< varepsilon <1 。並介紹兩種方法找到所有的穩定配對,透過 C++ 模擬結果比較各方法的優缺點,並與理論值作比對。 In this paper we study the stable marriage and stable husbands problems of stable matching, using the concept of breakmarriage and p-cycle, and revisit the result of Knuth ,Motwani and, Pittel : any particular girl has at least max(0, (1/2−epsilon) ln n) and at most (1+epsilon) ln n different husbands, with probability approaching 1 as n → ∞, if 0 < epsilin < 1. We introduce two methods to find all stable matchings and simulate in C++ programming language to compare these two methods and theoretical results.