中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/44482
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41660622      在线人数 : 1687
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/44482


    题名: 調適性多天線偵測使用精簡型自我組織模糊類神經網路;Adaptive Multi-antenna Detections Using Compact Self-constructing Fuzzy Neural Networks
    作者: 方光輝;Guang-hui Fang
    贡献者: 通訊工程研究所
    关键词: 波束形成器;智慧型天線;neural networks;MIMO;beamforming;CSFNN
    日期: 2010-09-28
    上传时间: 2010-12-09 13:45:38 (UTC+8)
    出版者: 國立中央大學
    摘要: 本篇論文提出的方法為,將精簡型自我組織模糊類神經網(compact self-constructing fuzzy neural network, CSFNN)用於調適性非線性波束形成(beamforming)偵測器上。CSFNN中使用精簡型架構演算法(compact self-constructing learning , CSL),使得CSFNN具有自動擴充類神經網路架構的能力。CSL採用兩項準則,用以限制結構不必要的成長,從而降低複雜度,因此,CSFNN偵測器比起傳統偵測器更能聰明地決定類神經網路架構。而在模擬結果中也顯示出,本篇論文提出的調適性波束形成器比起傳統的線性波束形成器,能在位元錯誤率部分(bit error rate, BER)部分表現更為優越。A novel adaptive nonlinear beamforming technique is proposed based on a compact self-constructing fuzzy neural network (CSFNN) detector, which is capable of increasing the size of detector structure automatically by a compact self-constructing learning (CSL) algorithm. Moreover, this CSL algorithm adopts two evaluation criteria to limit the unnecessary growth of structure complexity, so the structure of CSFNN detector can be determined more intelligently than that of classical detectors. The simulation results show that the proposed adaptive beamforming approach provides significant performance gains over classical beamforming ones in terms of bit-error rate.
    显示于类别:[通訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML830检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明