English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41644745 線上人數 : 1217
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library IR team.
搜尋範圍
全部NCUIR
資訊電機學院
電機工程學系
--研究計畫
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於NCUIR
‧
管理
NCU Institutional Repository
>
資訊電機學院
>
電機工程學系
>
研究計畫
>
Item 987654321/45381
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
資料載入中.....
資料載入中.....
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/45381
題名:
改善語者識別之最小分類錯誤新方法
;
Improved MCE Method for Speaker Identification
作者:
莊堯棠
貢獻者:
電機工程學系
關鍵詞:
資訊科學--軟體
日期:
2007-07-01
上傳時間:
2010-12-21 17:34:56 (UTC+8)
出版者:
行政院國家科學委員會
摘要:
語者識別中之語者模型通常使用最大相似度的訓練方法,而此種模型訓練並沒有考慮到語者識別模型彼此間的關係。在模型訓練完成後參數會落在對應的聲學模型中,此時有可能使得語音特徵向量與其他非相關模型的相似度值同時變大,造成識別上的混淆。因此近年來有所謂的鑑別式聲學模型訓練方法被提出來,其方法不以訓練聲學語料相似度之最大化為目標,而是以最小分類錯誤(MCE)為目標。特別是在少量訓練語料時,因為最小分類錯誤的方法可以訓練出較佳的模型,並且現行的最小分類錯誤法也有相當的改善空間,所以在本計畫中,我們擬提出最小分類錯誤的改進方法,改進的新方法包含提出一個計算量較少的新鑑別函式、訂定一門檻值以機動選擇適度且適當的競爭語者作語者模型之調整,以及提出適應性之調適權重,以便能更合理的去調整語者模型。預期此改進的新方法將可以改善語者識別模型的訓練速度,並增進語者識別的效果,其效果將由實驗來予以印證。 研究期間:9508 ~ 9607
關聯:
財團法人國家實驗研究院科技政策研究與資訊中心
顯示於類別:
[電機工程學系] 研究計畫
文件中的檔案:
檔案
描述
大小
格式
瀏覽次數
index.html
0Kb
HTML
309
檢視/開啟
在NCUIR中所有的資料項目都受到原著作權保護.
社群 sharing
::: Copyright National Central University. | 國立中央大學圖書館版權所有 |
收藏本站
|
設為首頁
| 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library IR team
Copyright ©
-
隱私權政策聲明