中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/45953
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43594892      線上人數 : 1073
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/45953


    題名: 線性超音波馬達三軸精密定位平台驅動控制系統;Driving and Control of Three Axes Precisioning Position Table Using Linear Ultrasonic Motors
    作者: 林法正
    貢獻者: 電機工程學系
    關鍵詞: 線性超音波馬達;X . Y .θ z 精密定位平台;共振反流器;自構式遞迴式模糊類神經網路;適應性遞迴式類神經網路;強健性模糊類神經網路滑動模態;Linear ultrasonic motor;X .Y .θ z precision table;Resonant inverter;Adaptive& Robust recurrent neural network;電子電機工程類
    日期: 2008-07-01
    上傳時間: 2010-12-28 15:54:14 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 本計畫研究之目的在發展線性超音波馬達(Linear Ultrasonic Motor, LUSM) z X . Y .θ 三軸精密定位平台驅動控制系統。此定位平台包含X、Y 軸之平移運動與z θ 軸之旋轉運動, 此平台可適用於半導體產業、多軸加工與細微製程等領域的應用上。本計畫首先利用市售之驅動器驅動線性超音波馬達, 並設計一圓形軌跡以遞迴式模糊類神經網路(Recurrent Fuzzy Neural Network, RFNN)控制器以達到定位平台之精密驅動控制, 並由此驗證整體系統之可行性, 其中遞迴式模糊類神經網路是一種動態的映射結構, 所以對於未知模式的動態系統、系統參數變化和外來負載等均能有效控制。本計畫所要發展之系統主要分為兩部份, 一為驅動系統部份, 另一為控制系統部份。在驅動系統部份, 本計畫將自行研製驅動器以取代市售之驅動器, 分別為推挽式共振反流器、全橋相移式零電壓共振反流器、LLCC 共振反流器和六階共振反流器來驅動線性超音波馬達。由於線性超音波馬達的總集數學模型目前不易正確獲得, 且其馬達參數具有非線性且時變特性, 易受溫度、負載轉矩及加在定子、轉子的彈簧靜壓力影響, 而智慧型控制系統不需受控體之詳細數學模型, 是利用對受控體控制特性之瞭解, 而提出推論機制與學習法則,達到系統之強健控制目的, 並且可以提昇控制系統之精密度。因此在控制系統部份, 本計畫分別提出利用自構式遞迴式模糊類神經網路 (Self-Constructing Recurrent Fuzzy Neural Network, SCRFNN)控制器、適應性遞迴式類神經網路(Adaptive Recurrent Neural Network, ARNN)控制器和強健性模糊類神經網路滑動模態(Robust Fuzzy Neural Network Sliding-Mode, RFNNSM)等強健控制器來控制線性超音波馬達精密定位平台。上述各控制系統均由實測結果來加以驗證其有效性。在軟體實現方面採用個人電腦, 在Windows 系統下以Visual Basic 語言撰寫各控制法則並配合運動控制卡及研製之各種共振反流器以驅動線性超音波馬達,進而擴展成z X .Y .θ 精密定位平台驅動控制系統,以達到精密定位控制所需之定位精度。本計畫並發展四種X .Y .θ z 三軸運動控制所需之軌跡規劃, 以配合各種微型機械電機系統(Microelectromechanical System, MEMS)簡稱微機電系統之應用, 其中各軸之控制器是應用上述所提之各控制架構分別設計之。 The purpose of this project is to develop a servo drive system with intelligent control for a z X .Y .θ three-axes precision table using linear ultrasonic motors (LUSMs) to achieve precision control with robustness. The adopted X .Y .θ z three-axes precision table is combined with three LUSMs and is very suitable for industrial applications where high precision and high acceleration/deceleration are required such as wire-bonding and other IC package technologies. In this project, first, a recurrent fuzzy neural network (RFNN) control is proposed to control the moving table of X .Y .θ z three-axes positioning table using available motor drive to track circle contour and to verify the effectiveness of the system. The RFNN is a dynamical mapping and demonstrate good control performance in the presence of unmodeled dynamics, parameter variations and external disturbances. Then, the structure and operating principle of the LUSM are introduced. Moreover, four driving circuits of the LUSM, the push-pull resonant inverter, the full-bridge phase-shift ZVS inverter, the LLCC resonant inverter and the six-order resonant inverter are developed. Furthermore, since the dynamic characteristics and motor parameters of the LUSM are nonlinear, time-varying, and the lumped dynamic model is difficult to be obtained, three intelligent control systems, the self-constructing recurrent fuzzy neural network (SCRFNN), adaptive recurrent neural network (ARNN), the robust fuzzy neural network sliding-mode (RFNNSM), are proposed with on-line learning capability and robust control characteristics to achieve precision position control. Finally, the effectiveness of the proposed control systems are verified by some experimental results in the presence of uncertainties. A personal computer (PC) with motion control cards is the core of the proposed z X .Y .θ three-axe precision table control system. Moreover, the proposed control systems are realized in the PC using the 「Visual Basic」 language under Windows operating system. With the designed inverters for the LUSM and the proposed intelligent control systems, the required precision control of the z X .Y .θ three-axes positioning table can be achieved. Furthermore, four types of contour planning for motion control are also developed for various applications of Microelectromechanical System (MEMS). In the motion control system, the X, Y and z θ axes are controlled independently using the proposed controllers. 研究期間:9608 ~ 9707
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[電機工程學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML401檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明