本計畫結合實驗分析與數據模擬研究細胞在膠狀材料上之黏著特性。此黏著特性之形成係透過凝膠表面與細胞膜之間的作用力(ligand binding),而此作用力不僅直接造成細胞的變形,它同時還透過細胞膜及細胞內部的結構組織cytoskeletons來傳遞各種化學及物理訊號並使細胞產生相關之物理及化學反應。此項力學及生物訊號間的相互作用過程在細胞上生理學物稱之為mechnotransduction 。 Mechnotransduction是細胞生理上非常重要的機制,幾乎所有的細胞的生理活動都透過此一機制來完成。本計畫將以一常用但簡易之細胞培養方式來觀察並量測細胞變形及在凝膠表面上的作用力。研究工作將同時致力於實驗及數值模擬並將兩者結果作適當之比較與結合,透過力學作用以瞭解細胞及凝膠之物理性質。本計畫亦將結合已有之研究經驗對實驗及理論進行連續性的發展。目前已有之研究經驗包括:力學特性用於描述人體組織(人及猪眼角膜)、水性凝膠(hydrogels)(隱形眼鏡)及細胞變形機制 (紅血球或白血球)。這些研究已發展出一個有系統的實驗及分析方法,而其可行性已被證明,因此將可應用於本計畫。我們焦點將放在細胞-水性凝膠(cell-hydrogel)的交互作用,水性凝膠對細胞在力學上的影響,及細胞內部生物化學經由mechnotransduction對應力學之反應。同時本計畫部分之研究將與在英國的生物醫學團隊和在新加坡的生化專家共同合作,以確保研究與生物醫學應用的密切關連性。計畫的最後一小部分將嘗試對特定cytoskeletons中的肌動蛋白(actins)進行蛋白質體測試。這項較高難度研究對未來藥品化學設計或免疫系統的反應有一定之關聯,因為細胞表面與外界的黏著性對病毒入侵及細胞本身的保護有著密不可分的關係。細胞表面任何複雜黏著特性的研究將確實有助於增進相關科學領域的發展。 This proposal is to give a combined experimental and numerical study on characterizing the cell traction on soft materials such as hydrogels for the cellular mechno-transduced deformation and bio-mechanical interactions. Such traction would trig the deformation and mechanical responses of cells and these responses are important in that they directly or indirectly affect the biochemical processes on the level of cells and beyond. This project aims to advance our understanding and combine two continuous developments in the mechanical characterizations on human tissues (human or porcine) and hydrogels (contact lens), cellular deformation (erythrocyte or leukocyte) through collaborations with biomedical research groups in hospitals. A general prototype approach of the characterizing technique has been developed to investigate several biological and artificial soft membranes with proved feasibility. Using such an approach, the focus will be on the cell-gel interaction and their implications on the mechanics of gels and celluar biochemistry via mechno-transduction. In parallel, a numerical modeling by the PI has been developed based on the theory of hyperelasticity in order to simulate the experimental work and comprehend the material responses of hydrogels in the virtue world by correlating with the experimental measures. A certain portion of theses preliminary studies is collaborating with the biomedical groups in the UK and biochemical experts in Singapore to ensure that the research was closely linked to biomedical applications in the area of cellular signal and chemo-mechanical responses via cellular adhesion, mechno-transductions through cytoskeletons (actins). These studies are crucial for the future design of immunization or drug delivery because adhesion on cell surface serves as the first and foremost mechanism for the life and protection of cells. Any sophisticated understanding of adhesion on cell surface does contribute to advances scientific developments in the relevant researches. A small portion of this proposal will be dedicated to protein analysis by methods from proteomics such polymerase chain reations (PCR) in an attempt to decipher the relation between adhesion and trans-memberane proteins and associated actins inside cells. 研究期間:9904 ~ 10001