|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625523
線上人數 : 1955
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/46882
|
題名: | 開發耦合力學、多相流、熱傳與地化反應傳輸數值模式於二氧化碳地質封存之應用;Develope Numerical Models of Coupled Mechanics, Multiphase Flow, Thermal Transport, and Reactive Chemical Transport for Carbon Dioxide Geological Sequestration Applications |
作者: | 葉高次 |
貢獻者: | 水文與海洋科學研究所 |
關鍵詞: | 二氧化碳封存;地化反應傳輸;多相流;熱傳;地質力學;Carbon dioxide sequestration;reactive chemical transport;multiphase flow;thermal transport;geomechanics;海洋科學類;環保工程 |
日期: | 2010-09-01 |
上傳時間: | 2011-07-13 14:43:46 (UTC+8) |
出版者: | 行政院國家科學委員會 |
摘要: | 大氣中二氧化碳濃度的持續升高加劇了全球暖化所可能帶來之衝擊。而透過將捕獲之二氧化碳封存於穩定之地質構造中,已被公認為技術上可行的主要減碳方案之一。一般而言,地質封存機制主要以結構、水力、溶解與礦化等4種方式為主,針對潛在封存場址,需要以數值模式量化評估其長期封存穩定性。國外研究發現,天然氣田之二氧化碳封存機制主要以溶解與礦化為主,而地下含水層之水力與化學特性將影響二氧化碳在溶解相與固相之平衡與反應,因此二氧化碳在地下水中之移棲特性為封存長期穩定性之評估要項。為有效理探討上述地質封存所可能涉及之複雜問題,本研究將以三年時程發展耦合力學、多相流、熱傳與地化反應傳輸之三維數值模式,目前全世界仍無任何一個模式可同時耦合模擬上述複雜機制,並進一步應用於台灣潛在二氧化碳地質封存場址之安全評估,並提供後續實際運轉操作時之驗證工作,以完整探討二氧化碳地質封存所可能涉及之長期水文地化穩定性。除發展耦合力學、多相流、熱傳與地化反應傳輸之三維數值模式外,本計畫另一重要工作為開發圖像式使用者介面與動態展示介面,並進一步發展具多工平行化之程式版本,提高演算法效率,以利後續實際應用於潛在場址所可能涉及之大量運算所需。本計畫之具體成效為,所發展之程式模組將是目前國際上最先進適用於二氧化碳封存研究之模擬工具程式庫,將可有效用於潛在場址之長期安全評估、灌注操作設計,並針對後續運轉之可能風險提供量化之科學佐證與驗證。 likely global warming impact. It has been identified that geologic sequestration (GS) is one of the most technically viable approaches to capture and store CO2 underground within a stable geological environment. This proposal is motivated by NSC’s specific goal of improving the understanding of factors affecting CO2 storage permanence and capacity in geologic formations. The objectives are to develop next generation codes for simulating CO2 sequestration in geologic formations. These codes are intended to uniquely address the interactions among multiphase flow processes, thermal transport, geo-mechanics processes, biogeochemical processes, and multiple scale geological heterogeneities. They will compose of (1) thermo-hydro-mechanical reactive transport models that enable the simulations of multiple physics and multiple-biogeochemistry in multiple types of media and (2) a users-friendly interface using grid-based resources to smoothly combine the simulation and visualization modules. Choices of thermal, mechanics, hydrologic, transport, and reaction parameters can be flexibly adjusted at any time during simulation runs. Such a modeling system permits the convenient setup of modeling conditions and automates real-life animations through the visualization of simulation outputs. To promote applications, the system composed of codes and software along with operational manuals will be made accessible by all hydrological and geological communities in general and NSC in particular to contribute to the overarching goal of integrating advanced MVA (monitoring, verification, and accounting), simulation, and risk assessment technologies and protocols. The modeling system will be applied to simulating potential sites characterized by complicated deformable geologic formations of various scale heterogeneities in the presence of multiphase flow and complex reactive biogeochemistry under non-isothermal conditions. The impacts of the project are two folds. First, the next generation simulators would enable more realistically conceptual representations and would greatly improve over the present-day models. Secondly, the modeling system may (1) strategically enhance monitoring of CO2 injected into deep geologic formations, (2) accurately determine possible leakage locations and leakage rates from storage reservoirs, and (3) significantly assist and advance the design of capture and storage systems. 研究期間:9909 ~ 10008 |
關聯: | 財團法人國家實驗研究院科技政策研究與資訊中心 |
顯示於類別: | [水文與海洋科學研究所] 研究計畫
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 543 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::