English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41633909      線上人數 : 3984
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/47461


    題名: 以正十八烷製備相轉移材料微膠囊;Preparation of PCM microcapsules containing n-octadecane
    作者: 黃士芳;Shih-fang Huang
    貢獻者: 化學工程與材料工程研究所
    關鍵詞: 相轉移材料;正十八烷;苯乙烯;甲基丙烯酸甲酯;能量儲存材料;微膠囊;Phase change material;Microcapsule;Energy storage materials;Methyl methacrylate;Styrene;n-Octadecane
    日期: 2011-06-14
    上傳時間: 2012-01-05 11:15:33 (UTC+8)
    摘要: 本研究利用懸浮聚合法與無乳化劑乳化聚合法以正十八烷製備相轉移材料微膠囊。微膠囊之殼物質為甲基丙烯酸甲酯(MMA)與苯乙烯(St)單體以及乙二醇二甲基丙烯酸酯(EGDMA)架橋單體之共聚物,以低溫微差掃描熱分析儀(DSC)、掃描式電子顯微鏡(SEM)、熱重損失分析儀(TGA)、傅立葉轉換紅外線光譜儀(FTIR)來探討製備條件對所生成之微膠囊的潛熱值、產率、包覆效率、外觀、粒徑和熱穩定的影響。 懸浮聚合法即將單體、交聯劑、相轉移材料及油性起始劑分散在含有聚乙烯醇(PVA)穩定劑之水溶液後,以乳化均質機攪拌再行聚合反應。由實驗結果顯示,MMA與St需同時存在且添加交聯劑的情況下,才可製備出152.3 J/g高潛熱值之相轉移材料微膠囊,其相轉移材料含量為60%,所製備出微膠囊之平均粒徑為148 nm,由TGA測試結果可知,相轉移材料微膠囊的熱重損失曲線比正十八烷的熱重損失曲線往高溫移動,由此可知微膠囊化後,可提高耐熱性質。 無乳化劑乳化聚合法即在St與EGDMA存在下,並以沸騰狀態先行聚合反應,且在適當反應時間下添加St、MMA、EGDMA與正十八烷,並再行聚合反應。實驗結果顯示,兩階段皆需添加交聯劑,且在兩階段之間暫停加熱下,可成功製備潛熱值為94.4 J/g之相轉移材料微膠囊,相轉移材料含量為37.2%,平均粒徑為179 nm。由TGA測試結果可知,相轉移材料微膠囊的熱重損失曲線比正十八烷的熱重損失曲線往高溫移動,由此可知微膠囊化後,可提高耐熱性質。另外,利用此方法製備相轉移材料微膠囊可縮短聚合反應時間至2小時。 In this study, the microencapsulated n-octadecane phase change materials (microPCMs) were prepared by suspension polymerization or emulsion-free polymerization. Methyl methacrylate and styrene were used as monomers. EGDMA was used as cross-linking agent. The thermal physical properties, surface morphology, thermal stabilities ,and chemical composition of microcapsules were measured by differential scanning calorimetry (DSC), scanning electron microscope (SEM), thermo gravimetric analysis (TGA) ,and fourier transform infrared spectroscopy (FTIR). In the first part, monomers, cross-linking agent, PCM, and initiator were mixed and added in PVA solution. The suspension polymerization was occurred after homogenlizing the above solution. The results showed that the highest enthalpy (152.3 J/g) and the PCM content (60%) of microPCMs was obtained in the presence of EGDMA. The average diameter of the microPCMs was 148 nm. In the second part, the microPCMs were prepared by the emulsion-free polymerization at boiling state. Monomers, cross-linking agent were mixed and polymerized at suitable conversion. Then monomers, cross-linking agent ,and PCM were added and ploymerized again. The results showed that the highest enthalpy (94.4 J/g) and the PCM content (37.2%) of microPCMs was obtained by adding EGDMA at both steps. The average diameter of the microPCMs was 179 nm. The polymerization time could reduce to 2 h. In addition, TGA analysis showed the weight loss curves of microPCMs prepared by both methods were higher than that of n-octadecane. Based on the results, we propose that the microPCMs possess good potential for thermal energy storage.
    顯示於類別:[化學工程與材料工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML653檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明