English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43370764      線上人數 : 1364
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/47601


    題名: 超輕鎂鋰合金經每道次高壓延進給率後之顯微組織與機械性質研究;Microstructures and Mechanical Properties of LAZ1110 Mg-Li Alloy after A Feed Rate of Heavy Rolling Reduction
    作者: 高嘉宏;Chia-hung Kao
    貢獻者: 機械工程研究所碩士在職專班
    關鍵詞: 壓延;固溶處理;鎂鋰合金;晶粒細化;Grain refining;Magnesium-Lithium alloy;Rolling;Solution treatment
    日期: 2011-05-30
    上傳時間: 2012-01-05 12:27:35 (UTC+8)
    摘要: 本研究目的為藉由不同壓延進給率方式,探討超輕鎂鋰合金之顯微組織的變化與機械性質的改變。鋰的加入大大提升了鎂合金的可塑性,使鎂合金具有良好的冷、熱的塑性變形能力,又以往之研究結果顯示,鎂鋰合金的機械強度與加工硬化效能不是很突出,為了提高Mg-Li合金的機械強度與加工硬化效能,添加Sc和Be元素進入Mg-Li合金中,形成LAZ1110及LAZ1110+Be&Sc兩種合金進行研究探討。 再利用不同的製程來提升機械性質,如固溶強化與冷加工強化;將材料分別進行壓延30%、60%、90%,由實驗的壓延進給率分別以10%與15%比較可以發現到,當鎂鋰合金製程經過擠製+固溶+壓延後,因為固溶強化與冷加工強化效果疊加,使得在當進給率15%的壓延90%後的最高強度可達281MPa左右,明顯高於當進給率10%的壓延90%後的最高強度約246 MPa,依先前文獻推知如經另一製程擠製+固溶+壓延時效後,鎂鋰合金材料於室溫時效下20~40hrs時會有尖峰時效產生,可產生最大抗拉強度。 顯微組織方面,由實驗結果可以發現到,兩種合金經過固溶處理後由α+β的雙相結構固溶為單一β相,經過壓延後晶粒被拉長呈現長條狀的晶粒,而隨著壓延率的上升α相也隨著被析出。兩種合金經過擠製+固溶+壓延後之試片,施以50、100、150、200、250℃×30mins退火處理後,其晶粒隨著溫度上升而增大,但是溫度達250℃時可以觀察到均勻的靜態再結晶之晶粒,尤其是壓延率90%之試片,其晶粒均小於10μm,適合用於超塑性之試驗。當壓延過後之鎂鋰合金置於室溫下,α相的析出會造成強度的下降而有過時效的效果。 This study purpose uses a different feed rate of rolling reduction, to research and discuss the microstructures and mechanical properties of a series of super light magnesium-lithium alloys. Adding Li raises Mg alloy formability and promotes improving cool and heat deformation ability. Previous researches indicate that Mg-Li alloys lack of strength and work hardening, therefore we wish to increase its strength and work hardening by adding Sc and Be into the alloy, creating two alloys, LAZ1110, LAZ1110+ Be &Sc, respectively. And we also use different processes to enhance the mechanical properties, such as solid solution treatment and cold work strengthening. Each material is rolled reduction by 30%, 60% and 90%. Experimental rolling reduction feed rate uses 10% and 15% to compare the test data difference. After Mg-Li alloy is extrusion plus solid solution and then cold rolling. Due to the superimposition effect of solid solution strengthening and cold work strengthening, the material after 90% rolling reduction of a feed rate 15% can obtain a maximum strength of about 281MPa. It’s apparently higher than a maximum about 246MPa of 90% rolling reduction of a feed rate 10%. Follow prior thesis, we can infer if the material is extruded, solid solution treated and cold rolled before aged. The material aged under room temperature after 20~40hrs will have peakaging with maximum tensile strength. In microstructures, experimental results show that two alloys change from α+β-phase to a single β-phase after solid solution treatment. After rolling the grains are elongated and α-phase will precipitate with increasing rolling percentage. The two alloys’ specimens after extrusion, solid solution and cold rolling were annealed at 50、100、150、200、250℃, respectively, for 30min. Their grain size increases with increasing annealing temperature. When annealing temperature reaches 250℃, uniformed static recrystalled grains can be observed, especially in specimens with 90% rolling reduction whose grain size is less than 10μm which is suitable for superplasticity tests. When Mg-Li alloys are placed under room temperature α-phase will precipitate resulting in a decrease in strength and overaging.
    顯示於類別:[機械工程學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML837檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明