因為磁流體電漿模型忽略了正離子慣性效應,所以無法用磁流體模型解釋在太空中觀測到的中、小尺度電漿物理現象。由於正離子與電子雙流體模型在長波極限時,就相當於磁流體模型。可是如果考慮正離子慣性效應、電子慣性效應、電荷分離與位移電流效應的話,這種雙流體模型又可涵蓋中、小尺度電漿波動的頻散效應,因此可以用來探討磁流體波模由低頻向中、高頻延伸的情形。本論文分析不同簡化程度的正離子與電子雙流體電漿模型,探討正離子慣性效應、電子慣性效應、及電荷分離效應對於磁流體波模之跨尺度頻散關係的影響。本論文的研究結果,將有助於未來太空觀測與數值模擬的研究。 The magnetohydromagnetic (MHD) plasma model ignores the ion inertial effect, so it cannot explain the meso-scale and micro-scale plasma phenomena observed in the space. At the long-wavelength limit, the ion-electron two-fluid plasma model is equivalent to the MHD plasma model, whereas the dispersion effects of the meso-scale and micro-scale plasma waves can also be included in the two-fluid plasma model if the effects of ion inertia, electron inertia, charge separation and displacement current are considered. Therefore, we can use the two-fluid model to study the cross-scale dispersion of the fast-mode, intermediated-mode, and slow-mode waves. The ion inertial effect, electron inertial effect, and the charge-separation and displacement current effect on the meso- and micro-scales wave dispersions will be examined based on four different simplified two-fluid models. The results of this thesis will provide a useful theoretical basis to assist the future studies on the multi-scale observations and the cross-scale simulations of the space plasma.