在本文中,我們證明一個結合了仿增長函數的加權哈弟空間Hpb,w的子空間,它的一個新的原子分解,藉此得到一個線性算子有界性的檢定法。在應用上,利用到消失矩條件,我們證明某些種類的Calderon-Zygmund算子在Hpb,w空間上是有界的。 In this article, we prove a new atomic decomposition for the subspace of weight Hardy space associated to para-accretive function Hpb,w and then obtain a criterion of the boundedness of linear operator. As an application, we show some kinds of Calderon-Zygmund operators are bounded on Hpb,w under some vanishing condition.