English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41694615      線上人數 : 2171
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/48393


    題名: 應用高階統計之特徵法自動調變辨識技術;A Feature-Based Automatic Modulation Classification Technique Using High-Order Statistics
    作者: 施博淦;Po-kuan Shih
    貢獻者: 通訊工程研究所
    關鍵詞: 特徵法自動調變辨識;多路徑衰減通道;自回歸通道模型;統計量;高 階統計值;feature-based AMC (FB-AMC);multipath fading channel;autoregressive channel model;high-order statistics;cumulant
    日期: 2011-08-31
    上傳時間: 2012-01-05 14:53:19 (UTC+8)
    摘要: 在訊號辨識的領域裡,自動訊號辨識是一門古典的題目。這項技術較常應用在當傳送訊號具有可適性時的情況。針對通過非AWGN通道的訊號進行辨識的工作至今仍是一項困難的挑戰,高階統計法是最常被設計應用於針對此狀況的辨識技術。我們使用高階統計參數來估測通道係數,並使用累計量來設計一個多階層決策架構。我們將討論在靜態和時變通道模型下的演算法差異,並比較在不同接收條件下的辨識率。 Automatic modulation classification (AMC) is a classical topic in signal classification field. This technique is often used when the transmitted signals are adaptive. So far, recognition of signals passing through non-AWGN channels is still a hard task. High-order statistics is the most adopted method of being designed for classification in non-AWGN situations. We use high-order statistical parameters to obtain estimated channel coefficients and design a multiple-layered decision structure with cumulants. We will discuss the difference of algorithms for static and time-varying channel models, and compare the classification rate in different receiving conditions.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML579檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明