English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41665178      線上人數 : 1532
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/48557


    題名: None Learning Transportation Modes with Two-Level Inference
    作者: 謝承璋;Cheng-chang Hsieh
    貢獻者: 資訊工程研究所
    關鍵詞: 交通模式;transportation mode
    日期: 2011-08-31
    上傳時間: 2012-01-05 14:57:51 (UTC+8)
    摘要: 使用者的交通模式(例如:走路、公車、汽車)反映其戶外行為模式。隨著具GPS (Global Positioning System,全球衛星定位系統)功能的手機與行動上網的普及,即時預測交通模式成為下列三種應用的基礎:消費行為、旅行行程分享、智慧路徑推薦。預測交通模式是本篇論文的核心議題,我們使用一個兩層推論架構來處理。第一層以五種特徵推論更換點,也就是交通模式被改變地點。第二層以十種特徵推論交通模式,七種交通模式被考慮:走路、單車、公車、汽車、機車、捷運、火車。第一層的F-measure是0.753。第二層的實驗結果以兩種指標來評估:距離準確度(AL)與時間準確度(AD)。其中,距離準確度為 0.876,時間準確度為 0.693。我們的題目比相關文獻更具挑戰性,因為我們的交通模式更多,而更精細的分類是較困難的。 The transportation mode of users, such as Walk, Bus, or Car, indicates the outdoor behavior pattern of the user. As the GPS (Global Positioning System) enabled phones and mobile internet accesses become pervasive, the prediction of transportation mode becomes fundamental in the area of shopping behaviors, travel itinerary sharing and smart route recommendation. Learning transportation modes is the central issue and a two-level inference architecture is used. The first level learns change-points, locations whose transportation mode differs from the previous location, with five features. The second level learns seven transportation modes, Walk, Bike, Bus, Car, Moto (Motorcycle), MRT (Mass Rapid Transit), and Train, with ten features. The F-measure is 0.753 in the first level. The results of second level are evaluated by Accuracy by by Length (AL) and Accuracy by Duration (AD), respectively. AL = 0.876 and AD = 0.693. Comparing to the related works, which contains four to five modes at the most, our work is more challenging since we have seven modes and the fine-grained classification is more difficult. The two main challenges in the classification of transportation modes, change-points and traffic congestions, are adressed and the combination of more sensors with GPS, such as 3-axis accelerometer, could be the future improvements.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML626檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明