English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%)
Visitors : 23111035      Online Users : 336
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/49092


    Title: 關鍵基礎設施相依性時空資訊整合平台暨決策支援系統研究( I );Spatiotemporal Integration Platform and Decision Support System for Management and Analysis of Critical Infrastructure Interdependency Information
    Authors: 周建成
    Contributors: 土木工程學系
    Keywords: Disaster Management System;Critical Infrastructure Interdependencies;Spatiotemporal Objects Database;Association Rules Discovery;Cloud Computing;研究領域:環保工程
    Date: 2011-03-01
    Issue Date: 2012-01-17 17:22:53 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 關鍵基礎設施對國家來說是重要的資產,用以連續地產生或輸送重要貨物或服務,例如交通設施、通訊設施、電力設施、瓦斯與汽油儲存與輸送設施、供水系統設施等。一般來說,基礎設施的擁有者為管控設施的正常運作會建立與維護基礎設施資料,這些資料包括地上或地下的管線與交通網路資訊等。此外,大部分關鍵基礎設施彼此是相依的,如供水系統需靠電力設施運作,此互動關係將建立跨越系統的複雜性。隨著國家關鍵基礎設施逐漸發展,系統複雜相依性將成長,國家的弱點將增加,也更易遭受威脅。例如某災害發生使得一關鍵基礎設施停止運作,關鍵基礎設施間的相依性將使得其他關鍵基礎設施也失效,惡化或擴大原災害造成的損害。事實上,研究顯示,完整與正確的基礎設施與其相依性資料對於建立災害管理系統來說非常重要。進一步的說,若政府沒有準確、即時、易取得的關鍵基礎設施與其相依性資料,則政府將很難降低天然或人為災害所造成的損害。儘管關鍵基礎設施與其相依性資料是如此重要,過去研究很少以完備方法論,輔以先進的資訊系統架構(如雲端計算環境),整體探討關鍵基礎設施相依性。本研究將設計整合式資訊模型,藉以了解關鍵基礎設施如何互動與工作,協助評估在災害下國家的弱點為何。 Critical infrastructure means important assets for producing or distributing a continuous flow of essential goods or services of a country. These assets include, but are not limited to, facilities for transportation, telecommunications, electric power systems, gas and oil storage and transportation, and water supply systems. Infrastructure baseline data, which are usually created and maintained by infrastructure systems owners for supervising the operations of the systems, contain above-ground and subsurface information for utility lines and transportation networks. Since most critical infrastructure systems interact, these interactions often create complex relationships, dependencies, and interdependencies that across infrastructure boundaries. As the complexity and interconnectedness of a country’s critical infrastructure evolve, threats and vulnerabilities for the country increase. When a disaster destroys one infrastructure system, the critical infrastructure interdependencies exacerbate the damage caused by the disaster. In fact, complete and accurate critical infrastructure baseline data and interdependencies are fundamental to create a disaster management system. Further, without accurate, timely, and accessible baseline data and interdependency information of critical infrastructure, a government can hardly help reducing the damage caused by natural or artificial disasters. However, past research does not use a comprehensive methodology to analyze the critical infrastructure baseline data and interdependencies. A comprehensive understanding of how networked critical infrastructure systems work can provide the means to better evaluate vulnerabilities related to hazards. The research analyzes and designs an integrated information model that is expected to best characterize the critical infrastructure interdependencies with baseline data for disaster mitigation. The cloud computing environment will be investigated and employed to derive new modeling elements that describe the critical infrastructure baseline data and interdependencies. In addition, since critical infrastructure baseline data, which have been mostly stored in Geographic Information Systems (GIS), also have substantial implications for temporal data processing, the proposed information model should accommodate the spatiotemporal data requirements. Hence, one advanced database technique that has emerged as a main focus of many spatial-temporal information systems such as the digital battlefield in the military is to keep track of object locations over time and to support temporal queries about future locations of the objects. Called Moving objects database (MOD) or Spatiotemporal Objects Database (SOD), this technique aims to deal with geometries changing over time and to simplify the data update process. The Leontief’s Input-Output model will be investigated to help create interdependencies of critical infrastructures. The association rules discovery technique will be utilized to help create the interdependency matrix. A literature review of current disaster management system (DMS) will be conducted, followed by several interviews with transportation agents and utility owners. The requirements of the model and prototype will be identified, and a pilot system will be created. Functional and non-functional requirements and measures will be determined and used to test the model and prototype, followed by conclusions and recommendations for the research. 研究期間:10003 ~ 10007
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[土木工程學系 ] 研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML288View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明